发布时间:2023-05-01 17:00
大数据分析是分析大量数据以发现诸如隐藏模式、相关性、市场趋势和消费者偏好等信息的一个复杂过程,这些信息有助于企业做出更好的决策。那,如何分析大数据?
一、明确数据分析的目的
1、如果数据分析的目的是要对比页面改版前后的优劣,则衡量的指标应该从页面的点击率,跳出率等维度出发,电商类应用还要观察订单转化率,社交类应用要注重用户的访问时长、点赞转发互动等频次。
2、如果数据分析的目的是探究某一模块数据异常波动的原因,则分析的方法应该按照金字塔原理逐步拆解,版本->时间->人群。
二、多渠道收集数据
收集方式一般有四类渠道。
1、从外部如易观或艾瑞的行业数据分析报告获取,需要带着审慎的态度去观察数据,提取有效准确的信息,剥离部分可能注水的数据,并需要时刻警惕那些被人处理过的二手数据。
2、从AppStore、客服意见反馈、微博等社区论坛去主动收集用户的反馈。
3、自行参与问卷设计、用户访谈等调研,直面用户,收集一手数据,观察用户使用产品时所遇到的问题及感受。问卷需要提炼核心问题,减少问题,回收结果需剔除无效的敷衍的问卷。用户访谈需要注意不使用引导性的词汇或问题去带偏用户的自然感受。
4、从已记录的用户行为轨迹去研究数据。大公司一般会有固话的报表/邮件去每天甚至实时反馈线上的用户数据情况,也会提供SQL查询平台给产品经理或数据分析师,让他们可以更有深度的探究对比数据。
三、有效剔除干扰数据
1、选取正确的样本数量,选取足够大的数量,剔除极端或偶然性数据的影响。
2、制定相同的抽样规则,减少分析结论的偏差性。
3、剔除版本或节假日因素的干扰,新版本刚上线时的数据表现往往会很好,因为主动升级的用户一般是高活跃度的用户。
4、对历史数据遗忘。
四、合理客观的审视数据
1、不要忽略沉默用户
产品经理在听到部分用户反馈的时候就做出决策,花费大量的时间开发相应的功能,往往结果,可能这些功能只是极少部分用户的迫切需求,而大部分用户并不在乎。甚至有可能与核心用户的诉求相违背,导致新版产品上线后数据猛跌。
忽略沉默用户,没有全盘的考虑产品大部分目标用户的核心需求,可能造成人力物力的浪费,更有甚者,会错失商业机会。
2、全面理解数据结果
如果实验结果的预期与我们的经验认知有明显的偏差,请不要盲目下结论质疑自己的直觉,而是尝试对数据进行更透彻的分析。
3、不要过度依赖数据
过度依赖数据,一方面,会让我们做很多没有价值的数据分析;另一方面,也会限制产品经理本来应有的灵感和创意。
在搭建大数据分析平台之前,要先明确业务需求场景以及用户的需求,通过大数据分析平台,想要得到哪些有价值的信息,需要接入的数据有哪些,明确基于场景业务需求的大数据平台要具备的基本的功能,来决定平台搭建过程中使用的大数据处理工具和框架。