发布时间:2023-05-15 15:30
本项目主要用于互联网电商企业中,使用Spark技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为、购物行为、广告点击行为等)进行复杂的分析。用统计分析出来的数据,辅助公司中的PM(产品经理)、数据分析师以及管理人员分析现有产品的情况,并根据用户行为分析结果持续改进产品的设计,以及调整公司的战略和业务。最终达到用大数据技术来帮助提升公司的业绩、营业额以及市场占有率的目标。
项目主要采用目前大数据领域最流行、最热门的技术——Spark,具有普通项目无法比拟的技术前瞻性与尖端性。本项目使用了Spark技术生态栈中最常用的三个技术框架,Spark Core、Spark SQL和Spark Streaming,进行离线计算和实时计算业务模块的开发。实现了包括用户访问session分析、页面单跳转化率统计、热门商品离线统计、广告流量实时统计4个业务模块。
该模块主要是对用户访问session进行统计分析,包括session的聚合指标计算、按时间比例随机抽取session、获取每天点击、下单和购买排名前10的品类、并获取top10品类的点击量排名前10的session。该模块可以让产品经理、数据分析师以及企业管理层形象地看到各种条件下的具体用户行为以及统计指标,从而对公司的产品设计以及业务发展战略做出调整。主要使用Spark Core实现。
该模块主要是计算关键页面之间的单步跳转转化率,涉及到页面切片算法以及页面流匹配算法。该模块可以让产品经理、数据分析师以及企业管理层看到各个关键页面之间的转化率,从而对网页布局,进行更好的优化设计。主要使用Spark Core实现。
该模块主要实现每天统计出各个区域的top3热门商品。然后使用Oozie进行离线统计任务的定时调度;使用Zeppeline进行数据可视化的报表展示。该模块可以让企业管理层看到公司售卖的商品的整体情况,从而对公司的商品相关的战略进行调整。主要使用Spark SQL实现。
该模块负责实时统计公司的广告流量,包括广告展现流量和广告点击流量。实现动态黑名单机制,以及黑名单过滤;实现滑动窗口内的各城市的广告展现流量和广告点击流量的统计;实现每个区域每个广告的点击流量实时统计;实现每个区域top3点击量的广告的统计。主要使用Spark Streaming实现。
1、CentOS 6.4
2、CDH 5.3.6
3、Spark 1.5.1
4、ZooKeeper 3.4.5
5、Kafka
6、Flume
7、Java(Scala)
8、Eclipse