发布时间:2023-09-25 18:30
参照博主dy_guox的帖子:
原文地址
搭建环境,但是原贴是原博主一年多之前所写,我的搭建过程中有一些弯路。
把更新的搭建过程记录下来。
因为我的旧电脑是win7系统,无法安装最新版的cuda,因此选择和原博主一样的版本,版本虽然旧但不影响学习。
Software versions | |
---|---|
OS | Windows, Linux |
Python | 3.8 |
TensorFlow | 2.2.0 |
CUDA Toolkit | 10.1 |
CuDNN | 7.6.5 |
Anaconda Navigator | 2.1.1 |
安装Anaconda。
下载地址: https://www.anaconda.com/products/individual
Anaconda安装过程网上有很多,此处略过.
接下来创建一个单独的conda环境
conda create -n tensorflow pip python=3.8
conda activate tf #如果你的环境名称不同,用你的环境名称替换tf
(tf) C:\\Users\\xxx>
写本文时Tensorflow已经发行到2.8.0版本,如果直接安装Tensorflow将会安装最新版2.8.0,与我们要安装的可以在Win7运行的CUDA Toolkit 10.1不兼容,因此通过命令行安装指定版本
pip install tensorflow==2.2.0 #注意版本号
安装好以后,输入
python -c \"import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))\"
可以得到类似如下输出
2022-03-03 20:46:47.246800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cudart64_101.dll
2022-03-03 20:46:51.783800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library nvcuda.dll
2022-03-03 20:46:51.909800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
561] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: Quadro M1000M computeCapability: 5.0
coreClock: 1.0715GHz coreCount: 4 deviceMemorySize: 2.00GiB deviceMemoryBandwidt
h: 74.65GiB/s
2022-03-03 20:46:51.918800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cudart64_101.dll
2022-03-03 20:46:51.929800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cublas64_10.dll
2022-03-03 20:46:51.938800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cufft64_10.dll
2022-03-03 20:46:51.946800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library curand64_10.dll
2022-03-03 20:46:51.956800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2022-03-03 20:46:51.967800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2022-03-03 20:46:51.987800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2022-03-03 20:46:52.003800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
703] Adding visible gpu devices: 0
2022-03-03 20:46:52.009800: I tensorflow/core/platform/cpu_feature_guard.cc:143]
Your CPU supports instructions that this TensorFlow binary was not compiled to
use: AVX2
2022-03-03 20:46:52.028800: I tensorflow/compiler/xla/service/service.cc:168] XL
A service 0x69b8bc60 initialized for platform Host (this does not guarantee that
XLA will be used). Devices:
2022-03-03 20:46:52.038800: I tensorflow/compiler/xla/service/service.cc:176]
StreamExecutor device (0): Host, Default Version
2022-03-03 20:46:52.049800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
561] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: Quadro M1000M computeCapability: 5.0
coreClock: 1.0715GHz coreCount: 4 deviceMemorySize: 2.00GiB deviceMemoryBandwidt
h: 74.65GiB/s
2022-03-03 20:46:52.065800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cudart64_101.dll
2022-03-03 20:46:52.071800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cublas64_10.dll
2022-03-03 20:46:52.078800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cufft64_10.dll
2022-03-03 20:46:52.085800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library curand64_10.dll
2022-03-03 20:46:52.091800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2022-03-03 20:46:52.100800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2022-03-03 20:46:52.106800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2022-03-03 20:46:52.120800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
703] Adding visible gpu devices: 0
2022-03-03 20:46:53.766800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
102] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-03-03 20:46:53.773800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
108] 0
2022-03-03 20:46:53.778800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
121] 0: N
2022-03-03 20:46:53.794800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 wit
h 1420 MB memory) -> physical GPU (device: 0, name: Quadro M1000M, pci bus id: 0
000:01:00.0, compute capability: 5.0)
2022-03-03 20:46:53.810800: I tensorflow/compiler/xla/service/service.cc:168] XL
A service 0x94a3aef0 initialized for platform CUDA (this does not guarantee that
XLA will be used). Devices:
2022-03-03 20:46:53.818800: I tensorflow/compiler/xla/service/service.cc:176]
StreamExecutor device (0): Quadro M1000M, Compute Capability 5.0
tf.Tensor(1110.8943, shape=(), dtype=float32)
以上是CPU版本
若要安装在 GPU 上运行 TensorFlow,还要安装所需的驱动程序和其他软件
(假设使用的3.8版本python)
系统要求 | |
---|---|
Nvidia GPU | (GTX 650 or newer) |
CUDA Toolkit | v10.1 |
CuDNN | 7.6.5 |
https://developer.nvidia.com/cuda-toolkit-archive 选择对应版本 10.1,具体安装教程见 https://docs.nvidia.com/cuda/archive/10.1/cuda-installation-guide-microsoft-windows/index.html
开始菜单搜索 ‘environment variables’ 或者‘系统变量’ , 或者桌面右键‘此电脑’- 属性-高级-环境变量
在系统变量中找到’PATH’,编辑,加入以下路径(
http://www.nvidia.com/Download/index.aspx下载更新驱动
此时最好重启一下电脑。
再次激活anaconda ‘tf’环境, 输入
python -c \"import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))\"
得到类似输出
2022-03-03 21:05:08.385800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cudart64_101.dll
2022-03-03 21:05:12.660800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library nvcuda.dll
2022-03-03 21:05:12.801800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
561] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: Quadro M1000M computeCapability: 5.0
coreClock: 1.0715GHz coreCount: 4 deviceMemorySize: 2.00GiB deviceMemoryBandwidt
h: 74.65GiB/s
2022-03-03 21:05:12.816800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cudart64_101.dll
2022-03-03 21:05:12.828800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cublas64_10.dll
2022-03-03 21:05:12.842800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cufft64_10.dll
2022-03-03 21:05:12.849800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library curand64_10.dll
2022-03-03 21:05:12.862800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2022-03-03 21:05:12.875800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2022-03-03 21:05:12.895800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2022-03-03 21:05:12.914800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
703] Adding visible gpu devices: 0
2022-03-03 21:05:12.921800: I tensorflow/core/platform/cpu_feature_guard.cc:143]
Your CPU supports instructions that this TensorFlow binary was not compiled to
use: AVX2
2022-03-03 21:05:12.939800: I tensorflow/compiler/xla/service/service.cc:168] XL
A service 0x61d0e890 initialized for platform Host (this does not guarantee that
XLA will be used). Devices:
2022-03-03 21:05:12.950800: I tensorflow/compiler/xla/service/service.cc:176]
StreamExecutor device (0): Host, Default Version
2022-03-03 21:05:12.961800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
561] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: Quadro M1000M computeCapability: 5.0
coreClock: 1.0715GHz coreCount: 4 deviceMemorySize: 2.00GiB deviceMemoryBandwidt
h: 74.65GiB/s
2022-03-03 21:05:12.973800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cudart64_101.dll
2022-03-03 21:05:12.980800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cublas64_10.dll
2022-03-03 21:05:12.987800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cufft64_10.dll
2022-03-03 21:05:12.995800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library curand64_10.dll
2022-03-03 21:05:13.001800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2022-03-03 21:05:13.008800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2022-03-03 21:05:13.015800: I tensorflow/stream_executor/platform/default/dso_lo
ader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2022-03-03 21:05:13.031800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
703] Adding visible gpu devices: 0
2022-03-03 21:05:14.591800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
102] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-03-03 21:05:14.600800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
108] 0
2022-03-03 21:05:14.605800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
121] 0: N
2022-03-03 21:05:14.622800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1
247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 wit
h 1419 MB memory) -> physical GPU (device: 0, name: Quadro M1000M, pci bus id: 0
000:01:00.0, compute capability: 5.0)
2022-03-03 21:05:14.641800: I tensorflow/compiler/xla/service/service.cc:168] XL
A service 0x93c96920 initialized for platform CUDA (this does not guarantee that
XLA will be used). Devices:
2022-03-03 21:05:14.652800: I tensorflow/compiler/xla/service/service.cc:176]
StreamExecutor device (0): Quadro M1000M, Compute Capability 5.0
tf.Tensor(-186.61127, shape=(), dtype=float32)
包含GPU信息,说明GPU版本已经安装成功。
https://github.com/tensorflow/models
从github上下载项目(右上角“Clone or download”-“DownloadZIP”),下载到本地目录(避免中文和空格),解压.
因为我的工作环境是在anaconda里建立的,因此放到anaconda的tf虚拟环境下的tensorflow文件夹,我的目录位置如下:
C:\\ProgramData\\Anaconda3\\envs\\tf\\Lib\\site-packages\\tensorflow
在 https://github.com/google/protobuf/releases 网站中选择windows 版本(最下面),解压后将bin文件夹中的【protoc.exe】放到models\\research文件夹
在models\\research\\目录下打开命令行窗口,输入:
# 在目录 tensorflow/models/research
protoc object_detection/protos/*.proto --python_out=.
在这一步有时候会出错,可以尝试把/*.proto 这部分改成文件夹下具体的文件名,一个一个试,每运行一个,文件夹下应该出现对应的.py结尾的文件。不报错即可。
TensorFlow 2 需要安装COCO API,而且最好在 object detection api之前安装,不然很有可能报错。
在安装COCO API之前,还需要确认已经安装
Visual C++ 2015 Build Tools https://go.microsoft.com/fwlink/?LinkId=691126
然后在tensorflow环境终端输入
pip install cython
pip install git+https://github.com/cocodataset/cocoapi.git#原博主的这个地址是旧的,请用此链接
pip install pycocotools #也可以
pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple#also fine
tensorflow环境终端 cd 到对应路径, 此处原博主的方法在我的电脑上无效,也是我花费最多时间摸索的步骤
cd /d TensorFlow/models/research/object_detection/packages/tf2
#将TensorFlow/models改为你的文件夹目录
python setup.py install
博主dy_guox的检验方法在这里就不灵了
感谢博主Jokic_Rn的文章帮我一个大忙,原文地址
https://blog.csdn.net/weixin_44823313/article/details/113115245
(tf) TensorFlow\\models\\research\\object_detection\\colab_tutorials>jupyter notebook
#将TensorFlow/models改为你的文件夹目录
import os
import pathlib
if \"models\" in pathlib.Path.cwd().parts:
while \"models\" in pathlib.Path.cwd().parts:
os.chdir(\'..\')
elif not pathlib.Path(\'models\').exists():
!git clone --depth 1 https://github.com/tensorflow/models
!pip install tensorflow-object-detection-api
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
至此,原示例图片的狗、人和风筝就会出现了。
最后,感谢两位原博主的文章。如有问题,到原博主的评论处提问,我是入门小菜鸟,照葫芦画瓢改掉过时内容而已。
【vue3项目】解决 “TypeError: Cannot read properties of undefined (reading ‘xxx‘)“
php开发为什么要使用docker,Docker? 为什么要使用Docker?
7 Papers & Radios | 陈丹琦关系抽取新SOTA;上海交大医疗版MNIST数据集
mysql伪列的使用,mysql伪列的妙用,mysql获取近几天的日期用来连表查询
yolov5-6.0部署:基于旋转目标的yolov5部署---opencv
【USENIX ATC】支持异构GPU集群的超大规模模型的高效的分布式训练框架Whale