resnet

发布时间:2023-11-28 10:30

\"resnet_第1张图片\"\"resnet_第2张图片\"
原来层数 加一个shortcut 短路效果,即使以前为22层,新的加了例如8层,效果最起码也比以前的不会差。\"resnet_第3张图片\"
VGG运算量大

import  torch
from    torch import  nn
from    torch.nn import functional as F
from    torch.utils.data import DataLoader
from    torchvision import datasets
from    torchvision import transforms
from    torch import nn, optim

# from    torchvision.models import resnet18

class ResBlk(nn.Module):
    \"\"\"
    resnet block
    \"\"\"

    def __init__(self, ch_in, ch_out):
        \"\"\"
        :param ch_in:
        :param ch_out:
        \"\"\"
        super(ResBlk, self).__init__()

        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)

        self.extra = nn.Sequential()
        if ch_out != ch_in:
            # [b, ch_in, h, w] => [b, ch_out, h, w]
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1),
                nn.BatchNorm2d(ch_out)
            )


    def forward(self, x):
        \"\"\"
        :param x: [b, ch, h, w]
        :return:
        \"\"\"
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        # short cut.
        # extra module: [b, ch_in, h, w] => [b, ch_out, h, w]
        # element-wise add:
        out = self.extra(x) + out

        return out




class ResNet18(nn.Module):

    def __init__(self):
        super(ResNet18, self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(16)
        )
        # followed 4 blocks
        # [b, 64, h, w] => [b, 128, h ,w]
        self.blk1 = ResBlk(16, 16)
        # [b, 128, h, w] => [b, 256, h, w]
        self.blk2 = ResBlk(16, 32)
        # # [b, 256, h, w] => [b, 512, h, w]
        # self.blk3 = ResBlk(128, 256)
        # # [b, 512, h, w] => [b, 1024, h, w]
        # self.blk4 = ResBlk(256, 512)

        self.outlayer = nn.Linear(32*32*32, 10)

    def forward(self, x):
        \"\"\"
        :param x:
        :return:
        \"\"\"
        x = F.relu(self.conv1(x))

        # [b, 64, h, w] => [b, 1024, h, w]
        x = self.blk1(x)
        x = self.blk2(x)
        # x = self.blk3(x)
        # x = self.blk4(x)

        # print(x.shape)
        x = x.view(x.size(0), -1)
        x = self.outlayer(x)


        return x



def main():
    batchsz = 32

    cifar_train = datasets.CIFAR10(\'cifar\', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=True)
    cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True)

    cifar_test = datasets.CIFAR10(\'cifar\', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor()
    ]), download=True)
    cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)


    x, label = iter(cifar_train).next()
    print(\'x:\', x.shape, \'label:\', label.shape)

    device = torch.device(\'cuda\')
    # model = Lenet5().to(device)
    model = ResNet18().to(device)

    criteon = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    print(model)

    for epoch in range(1000):

        model.train()
        for batchidx, (x, label) in enumerate(cifar_train):
            # [b, 3, 32, 32]
            # [b]
            x, label = x.to(device), label.to(device)

            logits = model(x)
            # logits: [b, 10]
            # label:  [b]
            # loss: tensor scalar
            loss = criteon(logits, label)

            # backprop
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()


        #
        print(epoch, \'loss:\', loss.item())


        model.eval()
        with torch.no_grad():
            # test
            total_correct = 0
            total_num = 0
            for x, label in cifar_test:
                # [b, 3, 32, 32]
                # [b]
                x, label = x.to(device), label.to(device)

                # [b, 10]
                logits = model(x)
                # [b]
                pred = logits.argmax(dim=1)
                # [b] vs [b] => scalar tensor
                correct = torch.eq(pred, label).float().sum().item()
                total_correct += correct
                total_num += x.size(0)
                # print(correct)

            acc = total_correct / total_num
            print(epoch, \'acc:\', acc)


if __name__ == \'__main__\':
    main()

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号