发布时间:2023-12-06 18:00
随着图像处理技术和计算机视觉技术的蓬勃发展,对特殊天气下的场景检测和图像处理成为重要的研究方向。在雾天拍摄的图像容易受雾或霾的影响,导致图片模糊、对比度低以至于丢失图像重要信息。因此,需要对带雾图像进行去雾,处理图像信息,保证其他计算机视觉任务的正常运行。
何凯明大神的暗通道先验,图像去雾的开山之作。
论文地址:https://ieeexplore.ieee.org/document/5567108/
Python代码地址:https://zhuanlan.zhihu.com/p/77060226
现有方法使用各种先验法得到脱雾图像,而图像去雾的关键是估计输入图像的介质传输图(medium transmission map)。本文运用深度学习,建立了一个端对端的去雾系统DehazeNet进行介质传输图的估计,然后通过大气散射模型得到去雾的图像。DehazeNet以单个有雾图像为输入、介质传输图为输出。其网络层设计来体现在图像去模糊中已建立的假设/先验,其实就是使用maxout进行特征提取。本文还提出了一种新的激活函数:双边整流线性单元(BReLU),提升无雾图像的质量。
论文及matlab代码地址:https://caibolun.github.io/DehazeNet/
MATLAB代码 :https://github.com/caibolun/DehazeNet
Pytorch代码:https://github.com/thuBingo/DehazeNet_Pytorch
csdn讲解
https://blog.csdn.net/Julialove102123/article/details/80199276?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522164422534316780357235909%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=164422534316780357235909&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-1-80199276.first_rank_v2_pc_rank_v29&utm_term=DehazeNet%3A+An+End-to-End+System+for+Single+Image+Haze+Removal+&spm=1018.2226.3001.418
https://blog.csdn.net/space_walk/article/details/108350493?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522164430331916780271566821%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=164430331916780271566821&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2alltop_click~default-1-108350493.first_rank_v2_pc_rank_v29&utm_term=dehazenet&spm=1018.2226.3001.4187
为了评估它们的性能,现有的除雾方法通常依赖于所产生的距离测量形象及其相应的基本事实。尽管能够产生视觉上良好的图像,但是使用基于像素或甚至感知的度量通常不能保证所产生的图像适合用作诸如分割的低级计算机视觉任务的输入。为了克服这个弱点,我们提出了一种新颖的端到端图像去雾方法,适合用作图像分割程序的输入,同时保持生成图像的视觉质量。受Generative Adversarial Networks(GAN)成功的启发,我们建议通过引入鉴别器网络和评估去噪图像的分割质量的损失函数来优化发生器。此外,我们利用补充损失函数来验证所生成图像的视觉和感知质量是否在朦胧条件下得以保留。使用所提出的技术获得的结果是吸引人的,当考虑在模糊图像上的分割算法的性能时,与现有技术方法的有利比较。
论文地址:https://www.researchgate.net/profile/Zhangyang-Wang/publication/318584247_An_All-in-One_Network_for_Dehazing_and_Beyond/links/5a4adc38458515f6b05b4820/An-All-in-One-Network-for-Dehazing-and-Beyond.pdf
csdn讲解:https://blog.csdn.net/Julialove102123/article/details/89046288
代码地址:https://github.com/Boyiliee/AOD-Net
本文提出了Densely Connected Pyramid Dehazing Network(DCPDN),该网络嵌入了大气散射模型。该网络包含两个生成器,分别用于生成传输率图和大气光,再通过大气散射模型产生去雾图。同时该网络还包含一个判别器,判别器输入为无雾图和传输率图的堆叠。本文还提出了一种新的损失函数,即边界感知损失函数。
论文地址:https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Densely_Connected_Pyramid_CVPR_2018_paper.pdf
代码地址:https://github.com/hezhangsprinter/DCPDN
csdn讲解:https://blog.csdn.net/space_walk/article/details/108534363?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522164424617616781685391443%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=164424617616781685391443&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-1-108534363.first_rank_v2_pc_rank_v29&utm_term=Densely+Connected+Pyramid+Dehazing+Network+Rutgers+University+2018+CVPR&spm=1018.2226.3001.4187
摘要本文提出了一种端到端的特征融合注意网络(FFA-Net),用于直接恢复无雾图像。FFA网络体系结构由三个关键组成部分组成:1)考虑到不同的信道特征包含完全不同的加权信息,不同的图像像素上的雾度分布不均匀,提出了一种新的特征注意(FA)模块,将信道注意与像素注意机制相结合。FA不平等地处理不同的特征和像素,这为处理不同类型的信息提供了额外的灵活性,扩展了CNNs的表示能力。
代码地址:https://github.com/zhilin007/FFA-Net
论文地址:https://www.researchgate.net/publication/337336627_FFA-Net_Feature_Fusion_Attention_Network_for_Single_Image_Dehazing
csdn讲解:https://blog.csdn.net/TJMtaotao/article/details/103215439?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522164422601016780265450724%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=164422601016780265450724&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v31_ecpm-3-103215439.first_rank_v2_pc_rank_v29&utm_term=Gated+Fusion+Network+for+Single+Image+Dehazing+2018+CVPR&spm=1018.2226.3001.4187
C y c l e \\mathrm{Cycle} Cycle- D e h a z e \\mathrm{Dehaze} Dehaze是 C y c l e G A N \\mathrm{CycleGAN} CycleGAN体系结构的增强版本,用于单幅图像去雾。 为了增加视觉质量指标PSNR,SSIM,它利用了EnhanceNet 启发的感知损失。
本文提出一种基于门限融合网络的雾霾图像的复原方法。该门限融合网络由一个编码解码网络构成。
论文地址:https://ieeexplore.ieee.org/document/8578441
csdn讲解:https://blog.csdn.net/Julialove102123/article/details/88798679
利用GAN网络,实现可端到端的图像去雾,本文的重点在于解决了网格伪影(grid artifacts)的问题,该文章的方法在PSNR和SSIM的指标上,有了极大的提升,非常值得借鉴。
论文地址:https://ieeexplore.ieee.org/document/8658661
代码地址:https://github.com/cddlyf/GCANet
笔记讲解地址:https://www.cnblogs.com/jingyingH/p/10061286.html
文章提出了一种端到端可训练的CNN,即GridDehazeNet。GridDehazeNet包含三个模块:预处理模块,主干模块和后处理模块。可训练的预处理模块相比手工选择的预处理方法,可以产生具有更好的多样性和更有针对性的输入。主干模块在实现了一种新的基于注意力的多尺度估计,有效缓解了传统多尺度方法中经常遇到的瓶颈问题。后处理模块有助于减少最终输出中的瑕疵。
论文及代码地址:https://xiaohongliu.ca/GridDehazeNet/
CSDN代码讲解:https://blog.csdn.net/space_walk/article/details/108085608
知乎讲解:https://zhuanlan.zhihu.com/p/103916927
Single Image Dehazing with An Independent Detail-Recovery Network
https://paperswithcode.com/paper/single-image-dehazing-with-an-independent
Progressive Feature Fusion Network for Realistic Image Dehazing
https://paperswithcode.com/paper/progressive-feature-fusion-network-for
FD-GAN: Generative Adversarial Networks with Fusion-discriminator for Single Image Dehazing
https://github.com/WeilanAnnn/FD-GAN
DHSGAN: An End to End Dehazing Network for Fog and Smoke
https://paperswithcode.com/paper/dhsgan-an-end-to-end-dehazing-network-for-fog