C++ 实现神经BP神经网络

发布时间:2024-04-11 17:01

BP.h

#pragma once
#include
#include
#include
#include
#include
using std::vector;
using std::exp;
using std::cout;
using std::endl;
class BP
{
private:
	int studyNum;//允许学习次数
	double h;//学习率
	double allowError;//允许误差
	vector<int> layerNum;//每层的节点数,不包括常量节点1
	vector<vector<vector<double>>> w;//权重
	vector<vector<vector<double>>> dw;//权重增量
	vector<vector<double>> b;//偏置
	vector<vector<double>> db;//偏置增量
	vector<vector<vector<double>>> a;//节点值
	vector<vector<double>> x;//输入
	vector<vector<double>> y;//期望输出

	void iniwb();//初始化w与b
	void inidwdb();//初始化dw与db
	double sigmoid(double z);//激活函数
	void forward();//前向传播
	void backward();//后向传播
	double Error();//计算误差
public:
	BP(vector<int>const& layer_num, vector<vector<double>>const & input_a0,
		vector<vector<double>> const & output_y, double hh = 0.5, double allerror = 0.001, int studynum = 1000);
	BP();
	void setLayerNumInput(vector<int>const& layer_num, vector<vector<double>> const & input);
	void setOutputy(vector<vector<double>> const & output_y);
	void setHErrorStudyNum(double hh, double allerror,int studynum);
	void run();//运行BP神经网络
	vector<double> predict(vector<double>& input);//使用已经学习好的神经网络进行预测
	~BP();
};

BP.cpp

#include "BP.h"
BP::BP(vector<int>const& layer_num, vector<vector<double>>const & input,
	vector<vector<double>> const & output_y, double hh, double allerror,int studynum)
{
	layerNum = layer_num;
	x = input;//输入多少个节点的数据,每个节点有多少份数据
	y = output_y;
	h = hh;
	allowError = allerror;
	a.resize(layerNum.size());//有这么多层网络节点
	for (int i = 0; i < layerNum.size(); i++)
	{
		a[i].resize(layerNum[i]);//每层网络节点有这么多个节点
		for (int j = 0; j < layerNum[i]; j++)
			a[i][j].resize(input[0].size());
	}
	a[0] = input;
	studyNum = studynum;
}

BP::BP()
{
	layerNum = {};
	a = {};
	y = {};
	h = 0;
	allowError = 0;
}

BP::~BP()
{
}

void BP::setLayerNumInput(vector<int>const& layer_num, vector<vector<double>> const & input)
{
	layerNum = layer_num;
	x = input;
	a.resize(layerNum.size());//有这么多层网络节点
	for (int i = 0; i < layerNum.size(); i++)
	{
		a[i].resize(layerNum[i]);//每层网络节点有这么多个节点
		for (int j = 0; j < layerNum[i]; j++)
			a[i][j].resize(input[0].size());
	}
	a[0] = input;
}


void BP::setOutputy(vector<vector<double>> const & output_y)
{
	y = output_y;
}

void BP::setHErrorStudyNum(double hh, double allerror,int studynum)
{
	h = hh;
	allowError = allerror;
	studyNum = studynum;
}

//初始化权重矩阵
void BP::iniwb()
{
	w.resize(layerNum.size() - 1);
	b.resize(layerNum.size() - 1);
	srand((unsigned)time(NULL));
	//节点层数层数
	for (int l = 0; l < layerNum.size() - 1; l++)
	{
		w[l].resize(layerNum[l + 1]);
		b[l].resize(layerNum[l + 1]);
		//对应后层的节点
		for (int j = 0; j < layerNum[l + 1]; j++)
		{
			w[l][j].resize(layerNum[l]);
			b[l][j] = -1 + 2 * (rand() / RAND_MAX);
			//对应前层的节点
			for (int k = 0; k < layerNum[l]; k++)
				w[l][j][k] = -1 + 2 * (rand() / RAND_MAX);
		}
	}
}


void BP::inidwdb()
{
	dw.resize(layerNum.size() - 1);
	db.resize(layerNum.size() - 1);
	//节点层数层数
	for (int l = 0; l < layerNum.size() - 1; l++)
	{
		dw[l].resize(layerNum[l + 1]);
		db[l].resize(layerNum[l + 1]);
		//对应后层的节点
		for (int j = 0; j < layerNum[l + 1]; j++)
		{
			dw[l][j].resize(layerNum[l]);
			db[l][j] = 0;
			//对应前层的节点
			for (int k = 0; k < layerNum[l]; k++)
				w[l][j][k] = 0;
		}
	}
}

//激活函数
double BP::sigmoid(double z)
{
	return 1.0 / (1 + exp(-z));
}

void BP::forward()
{
	for (int l = 1; l < layerNum.size(); l++)
	{
		for (int i = 0; i < layerNum[l]; i++)
		{
			for (int j = 0; j < x[0].size(); j++)
			{

				a[l][i][j] = 0;//第l层第i个节点第j个数据样本
				//计算变量节点乘权值的和
				for (int k = 0; k < layerNum[l - 1]; k++)
					a[l][i][j] += a[l - 1][k][j] * w[l - 1][i][k];
				//加上节点偏置
				a[l][i][j] += b[l - 1][i];
				a[l][i][j] = sigmoid(a[l][i][j]);
			}
		}
	}
}

void BP::backward()
{
	int xNum = x[0].size();//样本个数
	//daP第l层da,daB第l+1层da
	vector<double> daP, daB;
	

	for (int j = 0; j < xNum; j++)
	{
		//处理最后一层的dw
		daP.clear();
		daP.resize(layerNum[layerNum.size() - 1]);
		for (int i = 0, l = layerNum.size() - 1; i < layerNum[l]; i++)
		{
			daP[i] = a[l][i][j] - y[i][j];
			for (int k = 0; k < layerNum[l - 1]; k++)
				dw[l - 1][i][k] += daP[i] * a[l][i][j] * (1 - a[l][i][j])*a[l - 1][k][j];
			db[l - 1][i] += daP[i] * a[l][i][j] * (1 - a[l][i][j]);
		}

		//处理剩下层的权重w的增量Dw
		for (int l = layerNum.size() - 2; l > 0; l--)
		{
			daB = daP;
			daP.clear();
			daP.resize(layerNum[l]);
			for (int k = 0; k < layerNum[l]; k++)
			{
				daP[k] = 0;
				for (int i = 0; i < layerNum[l + 1]; i++)
					daP[k] += daB[i] * a[l + 1][i][j] * (1 - a[l + 1][i][j])*w[l][i][k];
				//dw
				for (int i = 0; i < layerNum[l - 1]; i++)
					dw[l - 1][k][i] += daP[k] * a[l][k][j] * (1 - a[l][k][j])*a[l - 1][i][j];
				//db
				db[l-1][k] += daP[k] * a[l][k][j] * (1 - a[l][k][j]);
			}
		}

	}
	
	//计算dw与db平均值
	for (int l = 0; l < layerNum.size() - 1; l++)
	{
		//对应后层的节点
		for (int j = 0; j < layerNum[l + 1]; j++)
		{
			db[l][j] = db[l][j] / xNum;
			//对应前层的节点
			for (int k = 0; k < layerNum[l]; k++)
				w[l][j][k] = w[l][j][k] / xNum;
		}
	}

	//更新参数w与b
	for (int l = 0; l < layerNum.size() - 1; l++)
	{
		for (int j = 0; j < layerNum[l + 1]; j++)
		{
			b[l][j] = b[l][j] - h * db[l][j];
			//对应前层的节点
			for (int k = 0; k < layerNum[l]; k++)
				w[l][j][k] = w[l][j][k] - h * dw[l][j][k];
		}
	}
}

double BP::Error()
{
	int l = layerNum.size() - 1;
	double temp = 0, error = 0;
	for (int i = 0; i < layerNum[l]; i++)
		for (int j = 0; j < x[0].size(); j++)
		{
			temp = a[l][i][j] - y[i][j];
			error += temp * temp;
		}
	error = error / x[0].size();//求对每一组样本的误差平均
	error = error / 2;
	cout << error << endl;
	return error;
}

//运行神经网络
void BP::run()
{
	iniwb();
	inidwdb();
	int i = 0;
	for (; i < studyNum; i++)
	{
		forward();
		if (Error() <= allowError)
		{
			cout << "Study Success!" << endl;
			break;
		}
		backward();
	}
	if (i == 10000)
		cout << "Study Failed!" << endl;
}

vector<double> BP::predict(vector<double>& input)
{
	vector<vector<double>> a1;
	a1.resize(layerNum.size());
	for (int l = 0; l < layerNum.size(); l++)
		a1[l].resize(layerNum[l]);
	a1[0] = input;
	for (int l = 1; l < layerNum.size(); l++)
		for (int i = 0; i < layerNum[l]; i++)
		{
			a1[l][i] = 0;//第l层第i个节点第j个数据样本
				//计算变量节点乘权值的和
			for (int k = 0; k < layerNum[l - 1]; k++)
				a1[l][i] += a1[l - 1][k] * w[l - 1][i][k];
			//加上节点偏置
			a1[l][i] += b[l - 1][i];
			a1[l][i] = sigmoid(a1[l][i]);
		}
	return a1[layerNum.size() - 1];
}

验证程序:

#include"BP.h"

int main()
{
	vector<int> layer_num = { 1, 10, 1 };
	vector<vector<double>> input_a0 = { { 1,2,3,4,5,6,7,8,9,10 } };
	vector<vector<double>> output_y = { {0,0,0,0,1,1,1,1,1,1} };

	BP bp(layer_num, input_a0,output_y,0.6,0.001, 2000);
	bp.run();
	for (int j = 0; j < 30; j++)
	{
		vector<double> input = { 0.5*j };
		vector<double> output = bp.predict(input);
		for (auto i : output)
			cout << "j:" << 0.5*j <<" pridict:" << i << " ";
		cout << endl;
	}
	system("pause");
	return 0;
}

输出:
C++ 实现神经BP神经网络_第1张图片

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号