使用CUDA+OpenCV加速yolo v4性能

发布时间:2022-10-07 14:00

使用CUDA+OpenCV加速yolo v4性能_第1张图片

YOLO是You-Only-Look-Once的缩写,它无疑是根据COCO数据集训练的最好的对象检测器之一。YOLOv4是最新的迭代版本,它在准确性和性能之间进行了权衡,使其成为最先进的对象检测器之一。在智能视频分析管道中使用任何对象检测器的典型机制包括使用像Tensorflow或PyTorch这样能够在NVIDIA GPU上操作的库来加速模型推理。

OpenCV用于图像/视频流输入,预处理和后处理的视觉效果。如果我告诉你OpenCV现在能够利用NVIDIA CUDA的优点,使用DNN模块本地运行YOLOv4,那会怎样?本文将带你通过使用CUDA和cuDNN构建OpenCV,以使用DNN模块加速YOLOv4推理。

介绍

我认识的大多数爱好者都有支持GPU的设备。我的目标是让GPU加速成为主流。谁不喜欢项目跑快点呢?我已经使用了OpenCV 4.5.1、CUDA 11.2和cuDNN 8.1.0来开始工作,使推理更容易!

首先,你需要设置CUDA,然后安装cuDNN,最后以构建OpenCV结束。此外,这个博客被分成了几个部分,这样更容易理解!

CUDA 11.2和cuDNN 8.1.0安装

最有可能使你的计算机无法启动的部分。开个玩笑啦!把每件事都做好,这应该是轻而易举的事。

安装CUDA 11.2

首先根据你的平台从CUDA存储库下载deb文件。

  • CUDA存储库:https://developer.nvidia.com/cuda-downloads

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号