发布时间:2022-11-28 17:30
转载本文请注明出处:https://xiaodu.io/ctc-explained作者:yudonglee
现实应用中许多问题可以抽象为序列学习(sequence learning)问题,比如词性标注(POS Tagging)、语音识别(Speech Recognition)、手写字识别(Handwriting Recognition)、机器翻译(Machine Translation)等应用,其核心问题都是训练模型把一个领域的(输入)序列转成另一个领域的(输出)序列。近年来基于RNN的序列到序列模型(sequence-to-sequence models)在序列学习任务中取得了显著的效果提升,本文介绍一种RNN(Recurrent Neural Networks)的端到端训练方法——CTC(Connectionist Temporal Classification)算法,它可以让RNN直接对序列数据进行学习,而无需事先标注好训练数据中输入序列和输出序列的映射关系,打破了RNN应用于语音识别、手写字识别等领域的数据依赖约束,使得RNN模型在序列学习任务中取得更好的应用效果。
本文总共分为五部分来全面阐述CTC算法(本篇为Part 1):
Part 1:Training the Network(训练算法篇),介绍CTC理论原理,包括问题定义、公式推导、算法过程等。Part 1链接。
Part 2:Decoding the Network(解码算法篇),介绍CTC Decoding的几种常用算法。Part 2链接。
Part 3:CTC Demo by Speech Recognition(CTC语音识别实战篇),基于TensorFlow实现的语音识别代码,包含详细的代码实战讲解。Part 3链接。
Part 4:CTC Demo by Handwriting Recognition(CTC手写字识别实战篇),基于TensorFlow实现的手写字识别代码,包含详细的代码实战讲解。Part 4链接。
Part 5:Conclusion(总结展望篇),总结CTC算法的理论局限性和适用场景,以及近年来相关的最新研究动态。Part 5链接。
接下来,我们先从“问题”的背景说起。
1. 背景介绍
在序列学习任务中,RNN模型对训练样本一般有这样的依赖条件:输入序列和输出序列之间的映射关系已经事先标注好了。比如,在词性标注任务中,训练样本中每个词(或短语)对应的词性会事先标注好,如下图(DT、NN等都是词性的标注,具体含义请参考链接)。由于输入序列和输出序列是一一对应的,所以RNN模型的训练和预测都是端到端的,即可以根据输出序列和标注样本间的差异来直接定义RNN模型的Loss函数,传统的RNN训练和预测方式可直接适用。
然而,在语音识别、手写字识别等任务中,由于音频数据和图像数据都是从现实世界中将模拟信号转为数字信号采集得到,这些数据天然就很难进行“分割”,这使得我们很难获取到包含输入序列和输出序列映射关系的大规模训练样本(人工标注成本巨高,且启发式挖掘方法存在很大局限性)。因此,在这种条件下,RNN无法直接进行端到端的训练和预测。
如下图,输入是“apple”对应的一段说话音频和手写字图片,从连续的音频信号和图像信号中逐一分割并标注出对应的输出序列非常费时费力,在大规模训练下这种数据要求是完全不切实际的。而如果输入序列和输出序列之间映射关系没有提前标注好,那传统的RNN训练方式就不能直接适用了,无法直接对音频数据和图像数据进行训练。
因此,在语音识别、图像识别等领域中,由于数据天然无法切割,且难以标注出输入和输出的序列映射关系,导致传统的RNN训练方法不能直接适用。那么,如何让RNN模型实现端到端的训练成为了关键问题。
Connectionist Temporal Classification(CTC)[1]是Alex Graves等人在ICML 2006上提出的一种端到端的RNN训练方法,它可以让RNN直接对序列数据进行学习,而无需事先标注好训练数据中输入序列和输入序列的映射关系,使得RNN模型在语音识别等序列学习任务中取得更好的效果,在语音识别和图像识别等领域CTC算法都有很比较广泛的应用。总的来说,CTC的核心思路主要分为以下几部分: