干货 | 漫谈图神经网络

发布时间:2022-12-09 22:30

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文转自:视学算法

作者最近看了一些图与图卷积神经网络的论文,深感其强大,但一些Survey或教程默认了读者对图神经网络背景知识的了解,对未学过信号处理的读者不太友好。同时,很多教程只讲是什么,不讲为什么,也没有梳理清楚不同网络结构的区别与设计初衷(Motivation)。

因此,本文试图沿着图神经网络的历史脉络,从最早基于不动点理论的图神经网络(Graph Neural Network, GNN)一步步讲到当前用得最火的图卷积神经网络(Graph Convolutional Neural Network, GCN), 期望通过本文带给读者一些灵感与启示。

  • 本文的提纲与叙述要点主要参考了2篇图神经网络的Survey,分别是来自IEEE Fellow的A Comprehensive Survey on Graph Neural Networks[1] 以及来自清华大学朱文武老师组的Deep Learning on Graphs: A Survey[7], 在这里向两篇Survey的作者表示敬意。

  • 同时,本文关于部分图卷积神经网络的理解很多都是受到知乎问题[8]高赞答案的启发,非常感谢他们的无私分享!

  • 最后,本文还引用了一些来自互联网的生动形象的图片,在这里也向这些图片的作者表示感谢。本文中未注明出处的图片均为笔者制作,如需转载或引用请联系本人。

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号