发布时间:2022-12-09 22:30
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
本文转自:视学算法
作者最近看了一些图与图卷积神经网络的论文,深感其强大,但一些Survey或教程默认了读者对图神经网络背景知识的了解,对未学过信号处理的读者不太友好。同时,很多教程只讲是什么,不讲为什么,也没有梳理清楚不同网络结构的区别与设计初衷(Motivation)。
因此,本文试图沿着图神经网络的历史脉络,从最早基于不动点理论的图神经网络(Graph Neural Network, GNN)一步步讲到当前用得最火的图卷积神经网络(Graph Convolutional Neural Network, GCN), 期望通过本文带给读者一些灵感与启示。
本文的提纲与叙述要点主要参考了2篇图神经网络的Survey,分别是来自IEEE Fellow的A Comprehensive Survey on Graph Neural Networks[1] 以及来自清华大学朱文武老师组的Deep Learning on Graphs: A Survey[7], 在这里向两篇Survey的作者表示敬意。
同时,本文关于部分图卷积神经网络的理解很多都是受到知乎问题[8]高赞答案的启发,非常感谢他们的无私分享!
最后,本文还引用了一些来自互联网的生动形象的图片,在这里也向这些图片的作者表示感谢。本文中未注明出处的图片均为笔者制作,如需转载或引用请联系本人。
【语义分割】SETR_Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformer
Mybatis开发要点:resultType和resultMap的区别?
python程序 爱意_程序员式优雅表白,教你用python代码画爱心
Android学习 ① Android连接不上Mysql数据库的多种原因以及解决方式
wx.chooseMessageFile ,微信小程序上传文件word,excel
阿里巴巴面试题- - -Java体系最新面试题(2022内部资料)
【Kubernetes 系列】详解 ConfigMap 九种创建方式
Chrome、Safari 二分天下,Firefox 无立足之地?