发布时间:2023-07-03 15:00
聚类是一种无监督学习,它将相似的对象归到同一个簇中。所谓无监督学习是指事先并不知道要寻找的内容,即没有目标变量。K-means 是一种典型的聚类算法,它可以发现k个不同的簇,且每个簇的中心采用簇中所含值得均值计算而成。聚类和分类的最大不同是分类的目标事先已知,而聚类则相反。
K-means算法具体实现代码如下:
from numpy import *
def loadDataSet(fileName): #general function to parse tab -delimited floats
dataMat = [] #assume last column is target value
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split(\'\\t\')
fltLine = map(float,curLine) #map all elements to float()
dataMat.append(fltLine)
return dataMat
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))#create centroid mat
for j in range(n):#create random cluster centers, within bounds of each dimension
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points
#to a centroid, also holds SE of each point
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf; minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print centroids
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment
def biKmeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
centroid0 = mean(dataSet, axis=0).tolist()[0]
centList =[centroid0] #create a list with one centroid
for j in range(m):#calc initial Error
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
while (len(centList) < k):
lowestSSE = inf
for i in range(len(centList)):
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
print \"sseSplit, and notSplit: \",sseSplit,sseNotSplit
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
print \'the bestCentToSplit is: \',bestCentToSplit
print \'the len of bestClustAss is: \', len(bestClustAss)
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids
centList.append(bestNewCents[1,:].tolist()[0])
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
return mat(centList), clusterAssment
import urllib
import json
def geoGrab(stAddress, city):
apiStem = \'http://where.yahooapis.com/geocode?\' #create a dict and constants for the goecoder
params = {}
params[\'flags\'] = \'J\'#JSON return type
params[\'appid\'] = \'aaa0VN6k\'
params[\'location\'] = \'%s %s\' % (stAddress, city)
url_params = urllib.urlencode(params)
yahooApi = apiStem + url_params #print url_params
print yahooApi
c=urllib.urlopen(yahooApi)
return json.loads(c.read())
from time import sleep
def massPlaceFind(fileName):
fw = open(\'places.txt\', \'w\')
for line in open(fileName).readlines():
line = line.strip()
lineArr = line.split(\'\\t\')
retDict = geoGrab(lineArr[1], lineArr[2])
if retDict[\'ResultSet\'][\'Error\'] == 0:
lat = float(retDict[\'ResultSet\'][\'Results\'][0][\'latitude\'])
lng = float(retDict[\'ResultSet\'][\'Results\'][0][\'longitude\'])
print \"%s\\t%f\\t%f\" % (lineArr[0], lat, lng)
fw.write(\'%s\\t%f\\t%f\\n\' % (line, lat, lng))
else: print \"error fetching\"
sleep(1)
fw.close()
def distSLC(vecA, vecB):#Spherical Law of Cosines
a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)
b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * \\
cos(pi * (vecB[0,0]-vecA[0,0]) /180)
return arccos(a + b)*6371.0 #pi is imported with numpy
import matplotlib
import matplotlib.pyplot as plt
def clusterClubs(numClust=5):
datList = []
for line in open(\'places.txt\').readlines():
lineArr = line.split(\'\\t\')
datList.append([float(lineArr[4]), float(lineArr[3])])
datMat = mat(datList)
myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
fig = plt.figure()
rect=[0.1,0.1,0.8,0.8]
scatterMarkers=[\'s\', \'o\', \'^\', \'8\', \'p\', \\
\'d\', \'v\', \'h\', \'>\', \'<\']
axprops = dict(xticks=[], yticks=[])
ax0=fig.add_axes(rect, label=\'ax0\', **axprops)
imgP = plt.imread(\'Portland.png\')
ax0.imshow(imgP)
ax1=fig.add_axes(rect, label=\'ax1\', frameon=False)
for i in range(numClust):
ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
markerStyle = scatterMarkers[i % len(scatterMarkers)]
ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker=\'+\', s=300)
plt.show()
java log4j2 详解_【JAVA】Log4j2日志详解
Springboot使用redis实现接口Api限流的示例代码
编译错误Variable-sized object may not be initialized 出现的原因及解决措施
SQL Server 2019 安装教程(详细免费,自定义安装)
Docker技术:Harbor私服搭建使用以及私服推送和拉取镜像(附常见问题,server gave HTTP response to HTTPS client)
论文阅读 TEMPORAL GRAPH NETWORKS FOR DEEP LEARNING ON DYNAMIC GRAPHS