发布时间:2023-09-24 10:00
利用笔记本电脑上的摄像头,通过ROS和OpenCV,利用Haar Cascade进行人脸检测
参考文档:https://docs.opencv.org/4.5.2/db/d28/tutorial_cascade_classifier.html
1、安装usb_cam
sudo apt-get install ros-kinetic-usb-cam
2、创建功能包,把xml文件下载到包里
xml是分类器文件,在OpenCV官网上可以下载到,我个人git账号上也有https://github.com/Grizi-ju/robot_vision
3、启动命令
$ roslaunch robot_vision usb_cam.launch
$ roslaunch robot_vision face_detector.launch
$ rqt_image_view
1、cv_bridge_test.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
class image_converter:
def __init__(self):
# 创建cv_bridge,声明图像的发布者和订阅者
self.image_pub = rospy.Publisher(\"cv_bridge_image\", Image, queue_size=1)
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber(\"/usb_cam/image_raw\", Image, self.callback)
def callback(self,data):
# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
try:
cv_image = self.bridge.imgmsg_to_cv2(data, \"bgr8\")
except CvBridgeError as e:
print e
# 在opencv的显示窗口中绘制一个圆,作为标记
(rows,cols,channels) = cv_image.shape
if cols > 60 and rows > 60 :
cv2.circle(cv_image, (60, 60), 30, (0,0,255), -1)
# 显示Opencv格式的图像
cv2.imshow(\"Image window\", cv_image)
cv2.waitKey(3)
# 再将opencv格式额数据转换成ros image格式的数据发布
try:
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, \"bgr8\"))
except CvBridgeError as e:
print e
if __name__ == \'__main__\':
try:
# 初始化ros节点
rospy.init_node(\"cv_bridge_test\")
rospy.loginfo(\"Starting cv_bridge_test node\")
image_converter()
rospy.spin()
except KeyboardInterrupt:
print \"Shutting down cv_bridge_test node.\"
cv2.destroyAllWindows()
2、face_detector.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image, RegionOfInterest
from cv_bridge import CvBridge, CvBridgeError
class faceDetector:
def __init__(self):
rospy.on_shutdown(self.cleanup);
# 创建cv_bridge
self.bridge = CvBridge()
self.image_pub = rospy.Publisher(\"cv_bridge_image\", Image, queue_size=1)
# 获取haar特征的级联表的XML文件,文件路径在launch文件中传入
cascade_1 = rospy.get_param(\"~cascade_1\", \"\")
cascade_2 = rospy.get_param(\"~cascade_2\", \"\")
# 使用级联表初始化haar特征检测器
self.cascade_1 = cv2.CascadeClassifier(cascade_1)
self.cascade_2 = cv2.CascadeClassifier(cascade_2)
# 设置级联表的参数,优化人脸识别,可以在launch文件中重新配置
self.haar_scaleFactor = rospy.get_param(\"~haar_scaleFactor\", 1.2)
self.haar_minNeighbors = rospy.get_param(\"~haar_minNeighbors\", 2)
self.haar_minSize = rospy.get_param(\"~haar_minSize\", 40)
self.haar_maxSize = rospy.get_param(\"~haar_maxSize\", 60)
self.color = (50, 255, 50)
# 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射
self.image_sub = rospy.Subscriber(\"input_rgb_image\", Image, self.image_callback, queue_size=1)
def image_callback(self, data):
# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
try:
cv_image = self.bridge.imgmsg_to_cv2(data, \"bgr8\")
frame = np.array(cv_image, dtype=np.uint8)
except CvBridgeError, e:
print e
# 创建灰度图像
grey_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 创建平衡直方图,减少光线影响
grey_image = cv2.equalizeHist(grey_image)
# 尝试检测人脸
faces_result = self.detect_face(grey_image)
# 在opencv的窗口中框出所有人脸区域
if len(faces_result)>0:
for face in faces_result:
x, y, w, h = face
cv2.rectangle(cv_image, (x, y), (x+w, y+h), self.color, 2)
# 将识别后的图像转换成ROS消息并发布
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, \"bgr8\"))
def detect_face(self, input_image):
# 首先匹配正面人脸的模型
if self.cascade_1:
faces = self.cascade_1.detectMultiScale(input_image,
self.haar_scaleFactor,
self.haar_minNeighbors,
cv2.CASCADE_SCALE_IMAGE,
(self.haar_minSize, self.haar_maxSize))
# 如果正面人脸匹配失败,那么就尝试匹配侧面人脸的模型
if len(faces) == 0 and self.cascade_2:
faces = self.cascade_2.detectMultiScale(input_image,
self.haar_scaleFactor,
self.haar_minNeighbors,
cv2.CASCADE_SCALE_IMAGE,
(self.haar_minSize, self.haar_maxSize))
return faces
def cleanup(self):
print \"Shutting down vision node.\"
cv2.destroyAllWindows()
if __name__ == \'__main__\':
try:
# 初始化ros节点
rospy.init_node(\"face_detector\")
faceDetector()
rospy.loginfo(\"Face detector is started..\")
rospy.loginfo(\"Please subscribe the ROS image.\")
rospy.spin()
except KeyboardInterrupt:
print \"Shutting down face detector node.\"
cv2.destroyAllWindows()
两个launch文件
3、usb_cam.launch
4、face_detector.launch
源码都传到git上了