课程笔记-三维点云处理04 ——Model Fitting

发布时间:2023-10-14 13:30

课程笔记-三维点云处理04 ——Model Fitting

本系列笔记是对深蓝学院所开设的课程:《三维点云处理》的笔记
课程每周更新,我也会努力将每周的知识点进行总结,并且整理成笔记发上来,欢迎各位多多交流&批评指正!!

本文主要为课程第四章的笔记!

课程链接:

三维点云处理——深蓝学院

正式内容:
####################################################

本节课大纲:

课程笔记-三维点云处理04 ——Model Fitting_第1张图片

  1. 首先继续将谱聚类 上节课只讲了步骤没有讲原理
  2. 介绍三个模型拟合的算法: 最小二乘法、霍夫变换、RANSAC

上节课回顾

课程笔记-三维点云处理04 ——Model Fitting_第2张图片
讲了三种聚类算法 Kmeans GMM 和谱聚类
前两种都是基于欧式距离的 谱聚类更多参考数据的密集程度,并且能够自确定K的数量

Spectral Clustering

谱聚类构建步骤:
课程笔记-三维点云处理04 ——Model Fitting_第3张图片

  1. 建立相似矩阵
  2. 用拉普拉斯矩阵L对矩阵进行计算
  3. 特征值分解,求对应于最小的K个特征值的特征向量
  4. 将特征向量组成一个v矩阵
  5. 对v矩阵的每一行都做一个Kmeans
  6. 对每一个点所在的类进行Kmeans分类

谱聚类原理

课程笔记-三维点云处理04 ——Model Fitting_第4张图片
相当于将点按照无向图的原理做链接。

课程笔记-三维点云处理04 ——Model Fitting_第5张图片
可以将谱聚类问题转化为图切割问题

课程笔记-三维点云处理04 ——Model Fitting_第6张图片

但是图切割会遇到问题:理想的分割应该切到红色和蓝色之间,但是事实上可能切到最边上这两个点,因为这样也能满足条件另损失函数很小
解决方法:可以加一个限制条件,使切出来的每一块都不至于太小

课程笔记-三维点云处理04 ——Model Fitting_第7张图片
表示A分区大小的有两种该方法 一个是按照其中元素个数划分 另一个是按照连接疏密的程度(权重划分)

分别对应两种切割的方法:RatioCut 和 NormalizedCut

课程笔记-三维点云处理04 ——Model Fitting_第8张图片

一般都是偏向于用有归一化的谱聚类,因此也用对应的 normalized cut 算法

谱聚类证明

直观证明:
课程笔记-三维点云处理04 ——Model Fitting_第9张图片

要用到拉普拉斯矩阵

课程笔记-三维点云处理04 ——Model Fitting_第10张图片

有几个分区,就能够在矩阵中找到几个特征值为0的向量
拉普拉斯矩阵可以把聚类的结果直接体现在特征向量上,所以比较方便。

特性

1。 拉普拉斯矩阵的特性
课程笔记-三维点云处理04 ——Model Fitting_第11张图片
具体证明如下:

课程笔记-三维点云处理04 ——Model Fitting_第12张图片

课程笔记-三维点云处理04 ——Model Fitting_第13张图片

性质2: 有多少个连通域就有多少个特征值为0
证明如下:课程笔记-三维点云处理04 ——Model Fitting_第14张图片

课程笔记-三维点云处理04 ——Model Fitting_第15张图片
具体推导过程忽略

证明

课程笔记-三维点云处理04 ——Model Fitting_第16张图片

总结课程笔记-三维点云处理04 ——Model Fitting_第17张图片

一般用normalize的
谱聚类可以用图切割的思想去理解

课程笔记-三维点云处理04 ——Model Fitting_第18张图片

总结 谱聚类的优点、缺点、复杂度

优点:在所有数据集上都比较好用
缺点:计算量比较复杂

meanshift & dbscan

这一节介绍一些轻松简单的聚类方法,跟谱聚类相比比较易于理解与计算 只做介绍不做推导
两种方法在实际应用场景中都会常见

mean shift

课程笔记-三维点云处理04 ——Model Fitting_第19张图片
引入:一个点云图里有一个圆,找出一个点使得以他为圆心的点最多

方法:类似于一个爬山的思想,先寻找一个圆,根据圆里面点的分布求位置坐标,然后根据分布求平均坐标作为圆心将圆移动,从而将圆的位置改变,进入下一个圆

如何将meanshift应用在聚类中?
课程笔记-三维点云处理04 ——Model Fitting_第20张图片

  1. 先将一个圆按照密度的方法移动到一个使他不再动的位置为止 (前三步)
  2. 重新找一个圆,同样让其按照meanshift方法移动 (重复多次)
  3. 将重叠的圆 取里面包含数量最多的圆,其他的圆去掉,剩下多少圆就说明有多少类别。

有些像进化算法

总结:
课程笔记-三维点云处理04 ——Model Fitting_第21张图片
因为还是最邻近的,所以对高纬度的数据处理性能不佳

DBSCAN

课程笔记-三维点云处理04 ——Model Fitting_第22张图片
跟meanshift相比效果更好,但复杂度却没有更高

类似于漫水算法

从一个点出发 找到离自己最近的点往前走
算法步骤:

课程笔记-三维点云处理04 ——Model Fitting_第23张图片

  1. 随便选一个没有经过过的点 即为P 然后找一个半径圆 统计圆内数量,如果达到要求就可以记为一类
  2. 如果没有达到要求,就扔掉 视为噪声
  3. 访问圆中的每一个点,并且标记为已经访问,并归类
  4. 重复上面的做法 进行分类

课程笔记-三维点云处理04 ——Model Fitting_第24张图片

一个点有两个标签 :一个是类标签 决定了是哪一类的 ;另一个是性质标签,分为核心点;边界点;噪声
只要是核心点都进行搜索 边界点不进行搜索但进行归类 噪声点不进行归类

总结:课程笔记-三维点云处理04 ——Model Fitting_第25张图片
对噪声比较稳定 比较简单
但是比较吃 最小周围点数 设置的数值(数值的选取和设置影响对性能影响比较大
而且在处理比较稠密的点(或者距离区间比较相近的点时表现没有那么好)

聚类算法总结

课程笔记-三维点云处理04 ——Model Fitting_第26张图片
一共讲了上面这几种例子,针对不同的数据分类方式的表现各异。
主要分两类 一类是基于距离的 另一类是基于连接的 各有优劣 。

通过上图可以看出 谱聚类在每一个场景下都有不错的发挥,属于鲁棒性比较强的算法。

模型拟合部分 model fitting

以如何拟合一条二维的直线为例进行讲解
课程笔记-三维点云处理04 ——Model Fitting_第27张图片

课程笔记-三维点云处理04 ——Model Fitting_第28张图片

  1. 如果知道所有的点都是内联值,可以用最小二乘直接拟合
  2. 如果有离群值,但不是特别的多 可以用加强最小二乘 霍夫变换 RANSAC (对噪声更加鲁棒)
  3. 如果大部分是噪声点 只能用 霍夫变换 RANSAC

Robust Least Square 鲁棒最小二乘

最小二乘

把问题变成平方和的模式
课程笔记-三维点云处理04 ——Model Fitting_第29张图片
最小二乘的标量表示

用矩阵形式表示如下:
课程笔记-三维点云处理04 ——Model Fitting_第30张图片
用A矩阵的最小特征向量去解就可以

一般对于最小二乘有三种写法:
课程笔记-三维点云处理04 ——Model Fitting_第31张图片
最小二乘法对于噪声比较敏感,所以要提出加强最小二乘

Robust Least Square

课程笔记-三维点云处理04 ——Model Fitting_第32张图片

用绝对值等一些对极端值反应较小的处理方法 来代替平方数 ,以此减小平方数对其的冲击

课程笔记-三维点云处理04 ——Model Fitting_第33张图片

如何解通用的最小二乘方法:
梯度下降法
高斯牛顿法
等一些其他的方法

总结:
课程笔记-三维点云处理04 ——Model Fitting_第34张图片
有点:简单 快速
缺点 :抵抗噪声能力差

霍夫变换

霍夫变换在图像当中最广泛的应用就是求线

核心思想是:原始空间的点可以转化成参数空间中的线或线转点
课程笔记-三维点云处理04 ——Model Fitting_第35张图片

将数据点翻转 做霍夫投票
课程笔记-三维点云处理04 ——Model Fitting_第36张图片
两个点可以取平均点

课程笔记-三维点云处理04 ——Model Fitting_第37张图片

用一个 θ角来表示空间中的直线

课程笔记-三维点云处理04 ——Model Fitting_第38张图片
然后进行霍夫投票

需要进行区域的划分 (结合速度和精度综合考量)

如果是三维空间坐标下 可以用r 和 θ 的坐标 进行求解
用这个方法可以求出三维空间中的圆锥
课程笔记-三维点云处理04 ——Model Fitting_第39张图片
然后再通过霍夫变换得到参数:

课程笔记-三维点云处理04 ——Model Fitting_第40张图片

总结:
课程笔记-三维点云处理04 ——Model Fitting_第41张图片

好处: 因为是基于投票的方法 ,所以对噪声干扰强 而且可以针对不完整的形状进行补充
劣势: 参数不能过高,因为每一个参数都是一维空间 所以一般只用在2维和3维的情况下

RANSAC

因为霍夫变换的模型参数一般小于三个,所以针对三维点云一般用RANSAC算法
课程笔记-三维点云处理04 ——Model Fitting_第42张图片

步骤:

课程笔记-三维点云处理04 ——Model Fitting_第43张图片

  1. 选定一个sample 即对于直线模型来说只需随机选取两个点
  2. 求解 直线的方程
  3. 计算其他点是否支持这个方案——求每个点到这个直线的距离 进行统计

课程笔记-三维点云处理04 ——Model Fitting_第44张图片
课程笔记-三维点云处理04 ——Model Fitting_第45张图片
4. 重复上述的步骤 当重复次数足够多时候进行比较

5.选出投票最多的模型

课程笔记-三维点云处理04 ——Model Fitting_第46张图片

参数设置:1. τ 应该以经验或者实验设置 (一般是符合 X方分布)
2. 设置迭代的参数 n 标准:做n次迭代得到一个好的标准的置信度要大于0.99(或0.9

课程笔记-三维点云处理04 ——Model Fitting_第47张图片
一些比较实用的tricks:
课程笔记-三维点云处理04 ——Model Fitting_第48张图片

  1. 找到一条达到预期的线就可以提前终止
  2. 模型选出来之后 实用LSQ重新优化一下 所得数据更加准确

总结:
课程笔记-三维点云处理04 ——Model Fitting_第49张图片

作业

课程笔记-三维点云处理04 ——Model Fitting_第50张图片

  1. 选一个KITTI数据集 把地面去掉
  2. 对于剩下的点 聚类
  3. 把地面标记成蓝色 不同聚类物体用不同颜色表达 (前景聚类)
  4. 并将结果可视化

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号