发布时间:2023-10-23 10:30
写在前面:
LightGBM 用了很久了,但是一直没有对其进行总结,本文从 LightGBM 的使用、原理及参数调优三个方面进行简要梳理。
目录
使用 LightGBM 官方接口,核心步骤
# 1.定义参数
config = json.load(open(\"configs/lightgbm_config.json\", \'r\'))
# 2. 构造数据
index = int(len(features)*0.9)
train_fts, train_lbls = features[:index], labels[:index]
val_fts, val_lbls = features[index:], labels[index:]
train_data = lgb.Dataset(train_fts, label=train_lbls)
val_data = lgb.Dataset(val_fts, label=val_lbls)
# 3. train
bst = lgb.train(params=config, train_set=train_data, valid_sets=[val_data])
# 4. predict
lgb.predict(val_data)
# lightgbm_config.json
{
\"objective\":\"binary\",
\"task\":\"train\",
\"boosting\":\"gbdt\",
\"num_iterations\":500,
\"learning_rate\":0.1,
\"max_depth\":-1,
\"num_leaves\":64,
\"tree_learner\":\"serial\",
\"num_threads\":0,
\"device_type\":\"cpu\",
\"seed\":0,
\"min_data_in_leaf\":100,
\"min_sum_hessian_in_leaf\":0.001,
\"bagging_fraction\":0.9,
\"bagging_freq\":1,
\"bagging_seed\":0,
\"feature_fraction\":0.9,
\"feature_fraction_bynode\":0.9,
\"feature_fraction_seed\":0,
\"early_stopping_rounds\":10,
\"first_metric_only\":true,
\"max_delta_step\":0,
\"lambda_l1\":0,
\"lambda_l2\":1,
\"verbosity\":2,
\"is_unbalance\":true,
\"sigmoid\":1,
\"boost_from_average\":true,
\"metric\":[
\"binary_logloss\",
\"auc\",
\"binary_error\"
]
}
import lightgbm as lgb
# 1. config
\"\"\"
objective parameter:
‘regression’ for LGBMRegressor
‘binary’ or ‘multiclass’ for LGBMClassifier
‘lambdarank’ for LGBMRanker.
\"\"\"
lgb_clf = lgb.LGBMModel(
objective = \'binary\',
metric = \'binary_logloss,auc\',
learning_rate = 0.1,
bagging_fraction = 0.8,
feature_fraction = 0.9,
bagging_freq = 5,
n_estimators = 300,
max_depth = 4,
is_unbalance = True
)
# 2. fit
# 3. predict
在处理大规模数据时,数据无法一次性载入内存,使用增量训练。
主要通过两个参数实现:
详细方法见 增量学习/训练
在LightGBM,Xgboost一直是kaggle的屠榜神器之一,但是,一切都在进步~
贪心算法生成树,时间复杂度\\(O(ndKlogn)\\),\\(d\\) 个特征,每个特征排序需要\\(O(nlogn)\\),树深度为\\(K\\)
Level-wise 生长,并行计算每一层的分裂节点
内存优化:
时间优化:
Leaf-wise(按叶子生长)生长策略
xgboost使用one-hot编码,LightGBM 采用了 Many vs Many 的切分方式,实现过程如下【7】:
将类别的取值当做bin,有多少个取值就是多少个bin(去除样本极少的bin)
统计该特征中的各取值上的样本数,按照从样本数从大到小排序,去除样本占比小于1%的类别值
对于剩余的特征值(可以理解为一个特征值对应一个桶),统计各个特征值对应的样本的一阶梯度之和,二阶梯度之和,根据正则化系数,算得各个桶的统计量: 一阶梯度之和 / (二阶梯度之和 + 正则化系数);
根据该统计量对各个桶进行从大到小排序;在排序好的桶上,进行最佳切点查找
is_unbalance=True
,表示 正样本的权重/负样本的权重 等于负样本的样本数/正样本的样本数scale_pos_weight
,代表的是正类的权重,可以设置为 number of negative samples / number of positive samplesclass weight
boosting / boost / boosting_type
用于指定弱学习器的类型,默认值为 ‘gbdt’,表示使用基于树的模型进行计算。还可以选择为 ‘gblinear’ 表示使用线性模型作为弱学习器。
‘gbdt’,使用梯度提升树
‘rf’,使用随机森林
‘dart’,不太了解,官方解释为 Dropouts meet Multiple Additive Regression Trees
‘goss’,使用单边梯度抽样算法,速度很快,但是可能欠拟合。
objective / application
“regression”,使用L2正则项的回归模型(默认值)。
“regression_l1”,使用L1正则项的回归模型。
“mape”,平均绝对百分比误差。
“binary”,二分类。
“multiclass”,多分类。
num_class
多分类问题的类别个数
增量训练
keep_training_booster=True # 增量训练
调优思路与方向
2^(max_depth)
L1
和 L2
正则化,对应XGBoost
的 reg_lambda
和 reg_alpha
LGBM
就会提示warning
,无法找到可以分裂的了,说明数据质量已经达到了极限了。参数含义和 XGBoost
的 gamma
是一样。比较保守的搜索范围是 (0, 20)
,它可以用作大型参数网格中的额外正则化使用Optuna
,定义优化目标函数:
import optuna # pip install optuna
from sklearn.metrics import log_loss
from sklearn.model_selection import StratifiedKFold
from optuna.integration import LightGBMPruningCallback
def objective(trial, X, y):
param_grid = {
\"n_estimators\": trial.suggest_categorical(\"n_estimators\", [10000]),
\"learning_rate\": trial.suggest_float(\"learning_rate\", 0.01, 0.3),
\"num_leaves\": trial.suggest_int(\"num_leaves\", 20, 3000, step=20),
\"max_depth\": trial.suggest_int(\"max_depth\", 3, 12),
\"min_data_in_leaf\": trial.suggest_int(\"min_data_in_leaf\", 200, 10000, step=100),
\"max_bin\": trial.suggest_int(\"max_bin\", 200, 300),
\"lambda_l1\": trial.suggest_int(\"lambda_l1\", 0, 100, step=5),
\"lambda_l2\": trial.suggest_int(\"lambda_l2\", 0, 100, step=5),
\"min_gain_to_split\": trial.suggest_float(\"min_gain_to_split\", 0, 15),
\"bagging_fraction\": trial.suggest_float(
\"bagging_fraction\", 0.2, 0.95, step=0.1
),
\"bagging_freq\": trial.suggest_categorical(\"bagging_freq\", [1]),
\"feature_fraction\": trial.suggest_float(
\"feature_fraction\", 0.2, 0.95, step=0.1
),
}
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1121218)
cv_scores = np.empty(5)
for idx, (train_idx, test_idx) in enumerate(cv.split(X, y)):
X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
y_train, y_test = y[train_idx], y[test_idx]
model = lgbm.LGBMClassifier(objective=\"binary\", **param_grid)
model.fit(
X_train,
y_train,
eval_set=[(X_test, y_test)],
eval_metric=\"binary_logloss\",
early_stopping_rounds=100,
callbacks=[
LightGBMPruningCallback(trial, \"binary_logloss\")
],
)
preds = model.predict_proba(X_test)
preds = model.predict_proba(X_test)
# 优化指标logloss最小
cv_scores[idx] = log_loss(y_test, preds)
return np.mean(cv_scores)
调优
study = optuna.create_study(direction=\"minimize\", study_name=\"LGBM Classifier\")
func = lambda trial: objective(trial, X, y)
study.optimize(func, n_trials=20)
搜索完成后,调用best_value
和bast_params
属性,调参就出来了。
print(f\"\\tBest value (rmse): {study.best_value:.5f}\")
print(f\"\\tBest params:\")
for key, value in study.best_params.items():
print(f\"\\t\\t{key}: {value}\")
-----------------------------------------------------
Best value (binary_logloss): 0.35738
Best params:
device: gpu
lambda_l1: 7.71800699380605e-05
lambda_l2: 4.17890272377219e-06
bagging_fraction: 0.7000000000000001
feature_fraction: 0.4
bagging_freq: 5
max_depth: 5
num_leaves: 1007
min_data_in_leaf: 45
min_split_gain: 15.703519227860273
learning_rate: 0.010784015325759629
n_estimators: 10000
得到这个参数组合后,我们就可以拿去跑模型了,看结果再手动微调,这样就可以省很多时间了。
lgb_clf.feature_importances_
【1】详解LightGBM两大利器:基于梯度的单边采样(GOSS)和互斥特征捆绑(EFB)详解LightGBM两大利器:基于梯度的单边采样(GOSS)和互斥特征捆绑(EFB) - 知乎
【2】LightGBM的参数详解以及如何调优. LightGBM的参数详解以及如何调优 - 云+社区 - 腾讯云
【3】LightGBM 中文文档. LightGBM 中文文档
【4】决策树(下)——XGBoost、LightGBM(非常详细)【机器学习】决策树(下)——XGBoost、LightGBM(非常详细) - 知乎
【5】ShowMeAI知识社区
【6】深入理解LightGBM - 知乎
【7】lightgbm离散类别型特征为什么按照每一个类别里对应样本的一阶梯度求和/二阶梯度求和排序? - 一直学习一直爽的回答 - 知乎 lightgbm离散类别型特征为什么按照每一个类别里对应样本的一阶梯度求和/二阶梯度求和排序? - 知乎
【8】LightGBM+OPTUNA超参数自动调优教程
【9】LightGBM with the Focal Loss for imbalanced datasets