辞职从事机器学习研究,脱产一年的我学到了什么?

发布时间:2022-08-19 12:14

辞职从事机器学习研究,脱产一年的我学到了什么?_第1张图片

作者 | David Mack
来源 | AI开发者

本文作者 David Mack,为了从事机器学习相关的研究,他辞去了工作,在没有固定收入的情况下进行了一年了探索。本文是他对过去一年经验和体会的总结。

辞职从事机器学习研究,脱产一年的我学到了什么?_第2张图片

最近,我发现我的生活需要一个新的挑战。我厌倦了我的日常工作,坚持想自己去从事机器学习研究。
这一年充满了挑战,且收获颇丰。我经历了许多失败和一系列意想不到的成功,走上了一条完全不同于之前设想的道路。

在这里,我将告诉你我的经历:我做了什么,哪些成功了,哪些失败了,我学到了什么,我会做什么不一样的事情。如果你渴望进入机器学习领域,或者想知道成为一名研究员需要什么,希望我的文章能够帮到你。

我从哪里开始

随着时间的推移,我工作中的学习和挑战逐渐减少。以前有很多未知的技能需要学习,现在我每天只需要按照一个规律的模式执行就可以。我对没有已知解决方案的开放性问题感到最为兴奋。

我越来越多地把空闲时间花在阅读学术论文和草拟解决开放性问题的方案上。

有一天,我坐在森林里的树桩上,等着一个朋友回来,我突然产生了一个想法,那就是我不得不辞职。这种清醒的时刻是奇怪和罕见的,你永远不知道它会出现在什么时候。第二天早上,我告诉我的团队我要离开。

在大学里,我攻读了计算机科学的本科和计算机科学与数学的硕士学位。我一直渴望进一步学习,但从未找到一个吸引我的环境。

在我辞职的时候,我很幸运有了一些存款,所以放弃全职工作就不那么可怕了。我每周工作 2 天并减少开支以使我的财务收支平衡。我的搭档帮助我,我很多周末都在工作。

辞职从事机器学习研究,脱产一年的我学到了什么?_第3张图片

热身运动

在辞掉工作之前,我已经开始从事微型研究项目,我会做一些有趣的东西,在网上写下来,这个过程不会花太多时间来完成。

这大大增强了我走这条新道路的信心。通过指导和出版它们(这里是其中一个例子),我向自己展示了我有研究的基本技能。

我鼓励任何正在考虑进行研究的人找到一些小项目,并把它们做完。它很有趣,并且能让你体验整个过程。

开始

在进入全职研究之后,我做的第一件事就是建立 Octavian.ai,这是一个我可以在网上写作的地方。我将一个网络流量网站,一个媒体出版物,facebook 和 twitter 整合在一起。虽然我在美术上花了很多时间(我也喜欢平面设计),但在过去的一年里,这个网站一直是我用得最多的地方。当人们对我的工作感兴趣时,我经常让他们去看看这个网站。

我还发现,有一个品牌可以将我们所有的工作和各种演讲活动联系在一起。我相信这个品牌帮助我们发展了我们的社区,因为它帮助组织看起来更加连贯和专业。

我没有为这件事情筹集任何资金。这只是一种个人探索的工具,不适合提升。

辞职从事机器学习研究,脱产一年的我学到了什么?_第4张图片

科研并不是魔法

我需要克服的最早的障碍之一是改变进行研究是一种只有精英才能完成的神秘活动的想法。

我现在已经从一些学生、研究人员和工程师那里听到了同样的感受。即使是出版过相关著作的研究人员也偶尔在 Twitter 上承认感觉自己像冒名顶替者,而不是「真正的研究人员」。

虽然我还只是研究领域的一个刚入门的学生,但我听说很多人对此感到消极,所以我想发表一个声明:研究不是魔法。这只是一个处理问题、定义问题、列出解决方案、尝试解决方案、了解什么方法有效以及记录这些问题的过程。任何聪明、勤奋的人都可以走这条路。

此外,你很容易因为害怕自己能力不够或者这件事情不值得去做而放弃。相反,开始研究吧,给它时间去自由发展。

进行研究需要很长时间

我今年最大的收获之一就是投入了很多时间、精力和资源来进行研究。具体来说,我的意思是产生成功的结果:一种比其他人表现更好的方法,或者发现一个能帮助其他人的问题。

在我的职业生涯中,我很清楚计划的谬误:

「预测完成未来任务所需时间经常会表现出乐观主义倾向,我们会低估所需的时间。」

然而,我花了很多时间在研究项目上,才真正做到这一点。我发现每个项目都会经历一个周期:

  1. 蜜月期:对问题和潜在解决方案的强烈兴奋、好奇和乐观

  2. 开始工作:打开代码编辑器,整理数据集,勾画出实验架构,满足线性进展

  3. 第一个障碍:解决这个问题比最初设想的要困难。数据处理需要更多的工作。最初的想法是错的。

  4. 悲伤、漫长的驱动/低谷:坚持成为支撑的动力,需要修复更多的错误,需要编写更多的测试用例,更多的变化需要尝试。未来可能会成功,也可能不会。

  5. 最后终于成功:完成这个项目过程中的一个快乐时刻。你可能永远不会到达这里,或者你可能会彻底证明你的方法永远不会奏效。如果是,返回到第一步。

  6. 把它拿出来:写作,然后点击发布。至此,你唯一的动机就是不再参与这个项目。你点击发布并离开办公室。

辞职从事机器学习研究,脱产一年的我学到了什么?_第5张图片

在我的心理评估中,我通常只记得步骤 1 到 3。我的记忆抹去了悲伤的事情,这也许是为了保护我的热情。

我现在对我承担的项目范围更加谨慎了。我有一个评分系统:

  • 新数据集?+2 分

  • 数据集太大,无法放在一台机器的内存中?+1 分

  • 从一篇没有代码的论文中实现?+1 分

  • 不适合库的结构:+1 分

  • 用多个 GPU 训练?+1 分

  • 集群训练?+3 分

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号