发布时间:2022-08-19 12:16
最近总结自己的公众号的时候,发现一个问题:对于联邦学习的文章,基本都是在讲述纵向联邦学习,对于横向联邦学习的技术涉及较少,所以心血来潮之下,决定写几篇文章来压压箱子底。
❝横向联邦:现代移动设备可以访问大量适合学习模型的数据,这些数据反过来可以大大提高设备上的用户体验。例如,语言模型可以提高语音识别和文本输入,图像模型可以自动选择好的照片。然而,这些丰富的数据通常是隐私敏感的、数量很大的,或者两者兼有,这可能会阻止记录到数据中心并使用常规方法在那里进行分析训练。
❞
所以针对于此研发人员设计了一种新的模式,即让训练数据分布在移动设备上,并通过聚集本地计算的更新来学习共享模型。我们将这种模式称为联邦学习。
横向联邦学习面临较多的挑战,大致总结如下: