发布时间:2024-01-22 19:30
x = tensor(42.)
v = tensor([1,2,3])
M = tensor([[1,2],[4,5]])
主要通过该案例去理解Pytorch中的autograd机制
训练模型并保存模型
import torch
import torch.nn as nn
import numpy as np
# 数据准备
x_values = [i for i in range(11)]
x_train = np.array(x_values, dtype=np.float32)
x_train = x_train.reshape(-1, 1)
y_values = [i*2 + 2 for i in range(11)]
y_train = np.array(y_values, dtype=np.float32)
y_train = y_train.reshape(-1,1)
class LinearRegressionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LinearRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
out = self.linear(x)
return out
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim, output_dim)
epochs = 1000
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
criterion = nn.MSELoss()
# 模型训练
for epoch in range(epochs):
epoch += 1
# 注意转行成tensor
inputs = torch.from_numpy(x_train)
labels = torch.from_numpy(y_train)
# 梯度要清零每一次迭代
optimizer.zero_grad()
# 前向传播
outputs = model(inputs)
# 计算损失
loss = criterion(outputs, labels)
# 返向传播
loss.backward()
# 更新权重参数
optimizer.step()
if epoch % 50 == 0:
print('epoch {}, loss {}'.format(epoch, loss.item()))
torch.save(model.state_dict(), 'model.pkl')
加载模型并预测
input_dim = 1
output_dim = 1
model = LinearRegressionModel(input_dim, output_dim)
model.load_state_dict(torch.load('model.pkl'))
import matplotlib.pyplot as plt
pred = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
plt.plot(x_values, pred, 'ro')
导入数据
import numpy as np
import torch
import pandas as pd
import torch.optim as optim
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
features = pd.read_csv("./temps.csv")
print(features.head())
import datetime
years = features["year"]
months = features["month"]
days = features["day"]
# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
plt.style.use('fivethirtyeight')
# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
fig.autofmt_xdate(rotation = 45)
# 标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')
# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')
# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')
plt.tight_layout(pad=2)
# 对部分数据进行独热编码
features = pd.get_dummies(features)
#标签
labels = np.array(features['actual'])
# 在特征中去掉标签
features = features.drop('actual', axis = 1)
# 名字单独保存
features_list = list(features.columns)
# 转换成合适的格式
features = np.array(features)
# 标准化处理
from sklearn.preprocessing import StandardScaler
input_features = StandardScaler().fit_transform(features)
# 获得训练集和测试集
x = torch.tensor(input_features, dtype = float)
y = torch.tensor(labels, dtype = float)
在处理好数据后我们可以通过下面两种方式搭建模型
下面我们手动去进行梯度下降,而不是使用torch 中内置的方法。
## 权重参数初始化
weights = torch.randn((14, 128), dtype = float, requires_grad = True)
biases = torch.randn(128, dtype = float, requires_grad = True)
weights2 = torch.randn((128, 1), dtype = float, requires_grad = True)
biases2 = torch.randn(1, dtype = float, requires_grad = True)
learning_rate = 0.001
losses = []
for i in range(10000):
# 计算隐层
hidden = x.mm(weights) + biases
# 加入激活函数
hidden = torch.relu(hidden)
# 计算输出层
output = hidden.mm(weights2) + biases2
# 计算损失
loss = torch.mean((output - y) ** 2)
losses.append(loss.data.numpy())
# 计算梯度
loss.backward()
#更新参数
weights.data.add_(- learning_rate * weights.grad.data)
biases.data.add_(- learning_rate * biases.grad.data)
weights2.data.add_(- learning_rate * weights2.grad.data)
biases2.data.add_(- learning_rate * biases2.grad.data)
# 清空梯度
weights.grad.zero_()
biases.grad.zero_()
weights2.grad.zero_()
biases2.grad.zero_()
# 打印损失值
if i % 100 == 0:
print('loss:', loss)
可以将这种写法跟上面的方法一进行对比
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = torch.nn.Sequential(
torch.nn.Linear(input_size, hidden_size),
torch.nn.Sigmoid(),
torch.nn.Linear(hidden_size, output_size)
)
# 定义损失函数
cost = torch.nn.MSELoss(reduction = 'mean')
# 可以通过这个进行链式的梯度下降
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
# 训练网络
losses = []
for i in range(1000):
batch_loss = []
# MINI-BATCH 方法来进行训练
# 每次仅用一部分数据投入训练
for start in range(0, len(input_features), batch_size):
end = start + batch_size if start + batch_size < len(input_features) else len(input_features)
x_batch = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)
y_batch = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)
# 前向传播
y_pred = my_nn(x_batch)
# 计算损失
loss = cost(y_pred, y_batch)
batch_loss.append(loss.item())
# 反向传播
loss.backward()
# 更新参数
optimizer.step()
# 清空梯度
optimizer.zero_grad()
batch_loss.append(loss.data.numpy())
# 打印损失
if i % 100 == 0:
losses.append(np.mean(batch_loss))
print('loss:', np.mean(batch_loss))
x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()
# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})
pre_data = pd.DataFrame(data = {'date': dates, 'actual': predict.reshape(-1)})
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'True')
# 预测值
plt.plot(pre_data['date'], pre_data['actual'], 'r-', label = 'Prediction')
plt.xticks(rotation = "60")
plt.legend()
plt.xlabel('Date')
plt.ylabel('Maximum Temperature (F)')
plt.title('Actual and Predicted Values')
from pathlib import Path
import requests
import matplotlib.pyplot as plt
DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"
PATH.mkdir(parents=True, exist_ok=True)
URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"
if not (PATH / FILENAME).exists():
content = requests.get(URL + FILENAME).content
(PATH / FILENAME).open("wb").write(content)
import pickle
import gzip
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")
plt.imshow(x_train[1].reshape(28, 28), cmap="gray")
# 将数据格式进行转化
x_train, y_train, x_valid, y_valid = map(
torch.tensor, (x_train, y_train, x_valid, y_valid)
)
n,c = x_train.shape
x_train, x_train.shape, y_train.min(), y_train.max()
bs = 64
xb = x_train[0:bs]
yb = y_train[0:bs]
weights = torch.randn([784, 10], dtype=torch.float ,requires_grad=True)
bs = 64
bias = torch.zeros(10, requires_grad=True)
from torch.utils.data import DataLoader, TensorDataset
train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True)
valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=bs *2)
创建一个model 来简化代码
from torch import nn
import torch.nn.functional as F
class Mnist_NN(nn.Module):
"""
## 网络结构搭建
"""
def __init__(self):
super().__init__()
self.hidden1 = nn.Linear(784, 128)
self.hidden2 = nn.Linear(128, 256)
self.out = nn.Linear(256, 10)
def forward(self, xb):
"""
## 尽心前向传播
"""
xb = F.relu(self.hidden1(xb))
xb = F.relu(self.hidden2(xb))
xb = self.out(xb)
return xb
def loss_batch(mode, loss_func, xb, yb, opt = None):
"""
## 计算损失值的时候,同时进行反向传播
"""
loss = loss_func(mode(xb), yb)
if opt is not None:
loss.backward()
opt.step()
opt.zero_grad()
return loss.item(), len(xb)
def getModel():
"""
## 获取模, 并获得优化函数
"""
model = Mnist_NN()
return model, torch.optim.SGD(model.parameters(), lr=0.1)
def fit(steps, model, loss_func,opt, train_dl, valid_dl):
"""
## 模型训练的入口
"""
for epoch in range(steps):
model.train()
for xb, yb in train_dl:
loss_batch(model, loss_func, xb, yb, opt)
model.eval()
with torch.no_grad():
losses, nums = zip(
*[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl]
)
val_loss = np.sum(losses) / np.sum(nums)
val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)
print(epoch, val_loss)
## 模型训练入口
loss_func = F.cross_entropy
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)
model, opt = getModel()
fit(25, model, loss_func, opt, train_dl, valid_dl)
目前可以将这个当作模板写法,主要包含:
1… 模型获取函数
2. 网络模型结构
3. 损失计算梯度下降
4. 模型训练
数据导入部分
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
# 定义超参数
input_size = 28 # 输入图片的大小
num_classes = 10 # 标签的类数
num_epochs = 5 # 训练次数
batch_size = 64 # 一批次训练64个样本
# 训练集
train_dataset = datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
# 测试集
test_dataset = datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor(),)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True)
卷积网络构建模块
这里我们采用两层卷积
class CNN(nn.Module):
"""
## 搭建两层卷积神经网络
"""
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(
in_channels=1, # 灰度图像,即1个通道
out_channels=16, # 要得到的特征图数
kernel_size=5, # 卷积核的大小
stride=1, # 步长大小
padding=2, # 填充大小,往外补充的大小
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 5, 1, 2),
nn.ReLU(),
nn.MaxPool2d(2),
)
self.out = nn.Linear(32 * 7 * 7, 10) # 全连接层 得到结果
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # flatten的操作,转化为向量
x = self.out(x)
return x
准确率计算
def accuracy(output, target):
"""
## 计算准确率
"""
pred = torch.max(output.data, 1)[1]
rights = pred.eq(target.data.view_as(pred)).sum()
return rights, len(target)
获得模型和优化器
def get_model():
"""
获得模型以及优化器
"""
net = CNN()
optimizer = optim.SGD(net.parameters(), lr=0.001)
return net, optimizer
计算损失值,并进行反向传播
def loss_process(loss_func,output, target, opt=None):
"""
计算损失
"""
loss = loss_func(output, target)
if opt is not None:
loss.backward()
opt.step()
opt.zero_grad()
return loss
模型训练
def fit(epochs, model, optimizer, train_loader, test_loader, loss_func):
"""
训练模型
"""
for epoch in range(epochs):
#当前epoch的结果保存下来
train_rights = []
for i, (images, labels) in enumerate(train_loader):
model.train()
output = model(images)
right = accuracy(output, labels)
loss = loss_process(loss_func, output, labels, optimizer)
train_rights.append(right)
if i % 100 == 0:
# 每训练一百轮数据
model.eval()
val_rights = []
for (data, target) in test_loader:
output = model(data)
right = accuracy(output, target)
val_rights.append(right)
#准确率计算
train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))
val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))
print('当前epoch: {} [{}/{} ({:.0f}%)]\t损失: {:.6f}\t训练集准确率: {:.2f}%\t测试集正确率: {:.2f}%'.format(
epoch, i * batch_size, len(train_loader.dataset),
100. * i / len(train_loader),
loss.data,
100. * train_r[0].numpy() / train_r[1],
100. * val_r[0].numpy() / val_r[1]))
训练入口
# 实例化
model, optimizer = get_model()
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
fit(num_epochs, model, optimizer, train_loader, test_loader, criterion)
后续继续添加其它的一些任务,这里篇博客主要是理解Pytorch框架的作用,不过多关注模型原理