发布时间:2024-02-05 15:30
(知乎:https://zhuanlan.zhihu.com/p/314613894)
【算法3.1(k近邻法)】
L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p , p ≥ 1 L_p(x_i,x_j)=(\\sum_{l=1}^{n} |x_i^{(l)}-x_j^{(l)}|^p)^{\\frac{1}{p}},p\\ge1 Lp(xi,xj)=(l=1∑n∣xi(l)−xj(l)∣p)p1,p≥1
L 2 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_2(x_i,x_j)=(\\sum_{l=1}^{n} |x_i^{(l)}-x_j^{(l)}|^2)^{\\frac{1}{2}} L2(xi,xj)=(l=1∑n∣xi(l)−xj(l)∣2)21
L 2 ( x i , x j ) = ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ L_2(x_i,x_j)=\\sum_{l=1}^{n} |x_i^{(l)}-x_j^{(l)}| L2(xi,xj)=l=1∑n∣xi(l)−xj(l)∣
L ∞ ( x i , x j ) = max l ∣ x i ( l ) − x j ( l ) ∣ L_{\\infty}(x_i,x_j)=\\max_l|x_i^{(l)}-x_j^{(l)}| L∞(xi,xj)=lmax∣xi(l)−xj(l)∣
k值选择对k近邻法的结果有较大影响,较小的k值相当于用小邻域预测,学习的近似误差会减小,估计误差会增大,预测结果对邻近实例点非常敏感,即k值的减小意味着整体模型变复杂,容易过拟合;较大的k值相当于用大邻域预测,会减少估计误差,增大近似误差,整体模型变简单。
一般用交叉验证法选择最优k值
k近邻法的分类决策规则通常是多数表决规则(majority voting rule),多数表决规则等价于经验风险最小化
1 k ∑ x i ∈ N k ( x ) I ( y i ≠ c j ) = 1 − 1 k ∑ x i ∈ N k ( x ) I ( y i = c j ) \\frac{1}{k} \\sum_{x_i \\in N_k(x)} I(y_i \\ne c_j)=1-\\frac{1}{k} \\sum_{x_i \\in N_k(x)} I(y_i = c_j) k1xi∈Nk(x)∑I(yi=cj)=1−k1xi∈Nk(x)∑I(yi=cj)
【算法3.2(构造平衡kd树)】
T = { ( 2 , 3 ) T , ( 5 , 4 ) T , ( 9 , 6 ) T , ( 4 , 7 ) T , ( 8 , 1 ) T , ( 7 , 2 ) T } T=\\{(2,3)^T,(5,4)^T,(9,6)^T,(4,7)^T,(8,1)^T,(7,2)^T\\} T={(2,3)T,(5,4)T,(9,6)T,(4,7)T,(8,1)T,(7,2)T}
【算法3.3(用kd树的最近邻搜索)】
kd树搜索最近邻:①找到该目标点的叶结点;②从叶结点出发,依次回退到父结点;③每次在父结点和另一子结点上找最近邻。③不断查找与目标最邻近的结点,直到确定不可能存在更近结点终止。
目标点的最近邻,一定在以目标点为中心并通过当前最近点的超球体内部
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
# data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df[\'label\'] = iris.target
df.columns = [\'sepal length\', \'sepal width\', \'petal length\', \'petal width\', \'label\']
# data = np.array(df.iloc[:100, [0, 1, -1]])
plt.scatter(df[:50][\'sepal length\'], df[:50][\'sepal width\'], label=\'0\')
plt.scatter(df[50:100][\'sepal length\'], df[50:100][\'sepal width\'], label=\'1\')
plt.xlabel(\'sepal length\')
plt.ylabel(\'sepal width\')
plt.legend()
data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lWqcuT0L-1606413627947)(【统计学习方法】学习笔记-第3章-k近邻法.assets/image-20201127015410407.png)]
from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)
# 0.95
class myKNN:
def __init__(self,X_train,y_train,k=3,p=2):
\'\'\'
X_train,y_train,训练数据集
k:K值
p:距离度量
\'\'\'
self.k=k
self.p=p
self.X_train=X_train
self.y_train=y_train
def predict(self,X):
# 取距离最小的k个点:先取前k个,然后遍历替换
# knn_list存“距离”和“label”
knn_list=[]
for i in range(self.k):
dist=np.linalg.norm(X-self.X_train[i],ord=self.p)
knn_list.append((dist,self.y_train[i]))
for i in range(self.k,len(self.X_train)):
max_index=np.argmax([x[0] for x in knn_list])
dist=np.linalg.norm(X-self.X_train[i],ord=self.p)
if knn_list[max_index][0]>dist:
knn_list[max_index]=(dist,self.y_train[i])
# 聚合k近邻
knn = [k[-1] for k in knn_list]
count_pairs = Counter(knn)
max_label = sorted(count_pairs.items(), key=lambda x: x[1])[-1][0]
return max_label
def score(self, X_test, y_test):
right_count = 0
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right_count += 1
return right_count / len(X_test)
clf = myKNN(X_train, y_train,3)
clf.score(X_test,y_test)
# 1. 定义树结点=(结点样本,分裂维度,左子树,右子树)
# 2. 顺序寻找分裂维度和分裂点
# 3. 递归分裂
class KdNode(object):
def __init__(self,value,split,left,right):
self.value=value #结点存储的样本,k维向量
self.split=split #分裂维度
self.left=left #左子树
self.right=right #右子树
class KdTree(object):
def __init__(self,data):
k=data.shape[-1] #特征维度
# 在split维切分数据集data_set
def CreateNode(split,data_set):
if len(data_set)==0:
return None
# 确定分裂值,和下一个分裂维度
data_set=sorted(data_set,key=lambda x:x[split])
split_index=len(data_set)//2
split_value=data_set[split_index]
split_next=(split+1)%k
# 递归
return KdNode(
split_value
,split
,CreateNode(split_next,data_set[:split_index])
,CreateNode(split_next,data_set[split_index+1:])
)
self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点
# KDTree的前序遍历,用于验证树构建的对不对
def preorder(root):
print(root.value)
if root.left: # 节点不为空
preorder(root.left)
if root.right:
preorder(root.right)
data = np.array([[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]])
kd = KdTree(data)
preorder(kd.root)
#OUTPUT:
#[7 2]
#[5 4]
#[2 3]
#[4 7]
#[9 6]
#[8 1]
# 最近邻搜索。对构建好的kd树进行搜索,寻找与目标点最近的样本点:
from math import sqrt
from collections import namedtuple
# 定义一个namedtuple,具名元组,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple(\"Result_tuple\",
\"nearest_point nearest_dist nodes_visited\")
def find_nearest(kd_tree,point):
k=len(point) # 特征维度
def travel(kd_node,target,max_dist):
\'\'\'
输入:当前节点、目标点、目前最小距离
输出:最近结点、距离、已访问点数
备注:当前节点=分裂点,输出为当前节点构成的tree中最近的点是哪个
\'\'\'
# 如果当前节点为空节点,则返回距离inf
if not kd_node:
return result([0]*k,np.inf,0)
# 每一步这里为判定当前要分到哪个分支
nodes_visited=1
node_split=kd_node.split
node_value=kd_node.value
if target[node_split]<=node_value[node_split]:
nearer_node = kd_node.left # 下一个访问节点为左子树根节点
further_node = kd_node.right # 同时记录下右子树
else:
nearer_node=kd_node.right
further_node=kd_node.left
# 在被分的分支中,最近节点是哪个,距离多少(递归下探到叶子节点)
temp1=travel(nearer_node,target,max_dist)
# 取搜索到的最近点
nearest=temp1.nearest_point
dist=temp1.nearest_dist
nodes_visited+=temp1.nodes_visited
# 若搜索到的最近点比当前最小距离还小,则用该点的距离做超球体半径
if dist<max_dist:
max_dist=dist
# ①计算目标点到当前点截面的距离,即超球体和分割超平面是否相交
dist_split_plane=abs(node_value[node_split]-target[node_split])
# 若不相交,结束返回
if max_dist<dist_split_plane:
return result(nearest,dist,nodes_visited)
# ②计算目标点与当前点(分割点)的距离,如果更近,用这个
dist_split_point = sqrt(sum((p1 - p2)**2 for p1, p2 in zip(node_value, target)))
if dist_split_point < dist: # 如果“更近”
nearest = node_value # 更新最近点
dist = dist_split_point # 更新最近距离
max_dist = dist # 更新超球体半径
# ③检查另一个子结点对应的区域是否有更近的点
temp2 = travel(further_node, target, max_dist)
nodes_visited += temp2.nodes_visited
if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离
nearest = temp2.nearest_point # 更新最近点
dist = temp2.nearest_dist # 更新最近距离
return result(nearest, dist, nodes_visited)
return travel(kd_tree.root, point, float(\"inf\")) # 从根节点开始递归ret = find_nearest(kd, [3,4.5])
ret = find_nearest(kd, [3,4.5])
print (ret)
# Result_tuple(nearest_point=array([2, 3]), nearest_dist=1.8027756377319946, nodes_visited=4)