发布时间:2024-02-25 14:00
2021前端开发最全vuejs面试题(持续更新)_勤动手多动脑少说多做厚积薄发-CSDN博客1、什么是MVVM?答:MVVM是是Model-View-ViewModel的缩写,Model代表数据模型,定义数据操作的业务逻辑,View代表视图层,负责将数据模型渲染到页面上,ViewModel通过双向绑定把View和Model进行同步交互,不需要手动操作DOM的一种设计思想。2、怎么定义vue-router的动态路由?怎么获取传过来的动态参数?答:在router目录下的index.js文件中,对path属性加上/:id。 使用router对象的params.id3、vue-router有哪https://blog.csdn.net/qq_22182989/article/details/106795502JS必看面试题_勤动手多动脑少说多做厚积薄发-CSDN博客2019JS必看面试题1. javascript的typeof返回哪些数据类型.答案:string,boolean,number,undefined,function,object2. 例举3种强制类型转换和2种隐式类型转换?答案:强制(parseInt,parseFloat,number)隐式(== ===)3. split() join() 的区别答案:前者是将字符串切割成数组的形式,后者是将数组转换成字符串4. 数组方法pop() push() unshift() shttps://blog.csdn.net/qq_22182989/article/details/106792847
前端面试题汇总资料:
答:push、pop、shift、unshift、join、sort、concat、reverse、splice、slice、indexOf等
详细资料:
1. 相同点
if 判断语句中,两者都会被转换为false
2. 不同点
Number转换的值不同,Number(null)输出为0, Number(undefined)输出为NaN
null表示一个值被定义了,但是这个值是空值
作为函数的参数,表示函数的参数不是对象
作为对象原型链的终点 (Object.getPrototypeOf(Object.prototype))
定义一个值为null是合理的,但定义为undefined不合理(var name = null)
undefined表示缺少值,即此处应该有值,但是还没有定义
变量被声明了还没有赋值,就为undefined
调用函数时应该提供的参数还没有提供,该参数就等于undefined
对象没有赋值的属性,该属性的值就等于undefined
函数没有返回值,默认返回undefined
题目解析
先看代码
var Func=function(){
};
var func=new Func ();
new共经过了4几个阶段
1、创建一个空对象
varobj=new Object();
2、设置原型链
obj.__proto__= Func.prototype;
3、让Func中的this指向obj,并执行Func的函数体。
var result =Func.call(obj);
4、判断Func的返回值类型:
如果是值类型,返回obj。如果是引用类型,就返回这个引用类型的对象。
if (typeof(result) == "object"){
func=result;
}
else{
func=obj;;
}
1、call,apply都属于Function.prototype的一个方法,它是JavaScript引擎内在实现的,因为属于Function.prototype,所以每个Function对象实例(就是每个方法)都有call,apply属性。既然作为方法的属性,那它们的使用就当然是针对方法的了,这两个方法是容易混淆的,因为它们的作用一样,只是使用方式不同。
2、语法:foo.call(this, arg1,arg2,arg3) == foo.apply(this, arguments) == this.foo(arg1, arg2, arg3);
3、相同点:两个方法产生的作用是完全一样的。
4、不同点:方法传递的参数不同。
包括:
页面级优化和代码级优化。然后细分
页面级优化:比如:
1.减少 HTTP请求数
2.将外部脚本置底(将脚本内容在页面信息内容加载后再加载)
3.异步执行 inline脚本(其实原理和上面是一样,保证脚本在页面内容后面加载。)
4. Lazy Load Javascript(只有在需要加载的时候加载,在一般情况下并不加载信息内容。)
5. 将 CSS放在 HEAD中
6. 异步请求 Callback(就是将一些行为样式提取出来,慢慢的加载信息的内容)
7. 减少不必要的 HTTP跳转
8. 避免重复的资源请求
代码级优化:比如:
一般有以下几种方式:
defer 属性
async 属性
动态创建DOM方式
使用jQuery的getScript方法
使用setTimeout延迟方法
让JS最后加载
参考:
浏览器渲染的整个流程
浏览器的整个流程如上图所示。
1、 首先当用户输入一个URL的时候,浏览器就会发送一个请求,请求URL对应的资源。
2、 然后浏览器的HTML解析器会将这个文件解析,并且构建成一棵DOM树。
3、 在构建DOM树的时候,遇到JS和CSS元素,HTML解析器就换将控制权转让给JS解析器或者是CSS解析器。
4、 JS解析器或者是CSS解析器解析完这个元素时候,HTML又继续解析下个元素,直到整棵DOM树构建完成。
5、 DOM树构建完之后,浏览器把DOM树中的一些不可视元素去掉,然后与CSSOM合成一棵render树。
6、 接着浏览器根据这棵render树,计算出各个节点(元素)在屏幕的位置。这个过程叫做layout,输出的是一棵layout树。
7、 最后浏览器根据这棵layout树,将页面渲染到屏幕上去。
资料:
我们来看看ES6都做了哪些扩展。
变量的解构赋值
字符串,数值的扩展:
数组,对象,函数的扩展:
资料:
JavaScript ES6 (w3schools.com)https://www.w3schools.com/js/js_es6.asp
资料:
CSS垂直居中,你会多少种写法?_携手天下-CSDN博客https://blog.csdn.net/u010419337/article/details/89529541
通过Object.definerProperty来劫持各个数据的属性的setter和getter,在数据变化时,发布消息给依赖收集器,通知观察者去执行回调函数,达到视图更新的效果。(但是使用Object.definerProperty实现监听时是有一些痛点的,比如,①无法监测数组下标变化,导致数组删除或者插入元素时,数组的变化无法实时响应;②只能对对象的属性进行监测,当对象深度比较深时,只能遍历每个属性来实现监听。vue3.0采用的Proxy,就完全避开了Object.definerProperty方法的这些痛点)
props
、emit
、vuex
、路由传参、通过本地存储传参、vue-bus
(事件巴士)、$refs
、$children
、$parent
在严格模式下vuex中的state对象中的属性是不能随意更改的,但是在表单处理时使用v-model时用户可以随意更改数据,如果vuex中的state中的属性直接绑在v-model中时会抛出一个错误。解决办法
beforeCreate:初始化事件,进行数据观测。
created:data数据进行绑定。
beforeMount:虚拟DOM替换真实DOM。
mounted:将DOM元素挂载到页面。
beforeUpdate: data数据更新之前。
updated: data数据更新完成之后。
beforeDestroy:在实例销毁之前调用,所有实例仍可以调用。
destroyed:在实例销毁之后调用,所有实例被销毁。
懒加载即在需要的时候才进行加载,随用随载。在单页面应用中,如果没有应用懒加载,webpack打包后的文件会非常大,导致第一次进入首页时,加载时间过长,不利于用户体验。而运用懒加载可以将页面进行划分,需要的时候才加载页面,可以有效的分担首页所承受的加载压力,有效减少了加载用时。
给style标签添加scoped属性
Object.definerProperty是无法对数组和对象进行劫持监听的,所以vue3.0以下(不包括3.0)版本,对数组的监听是直接重写了push、shift……等Array常用的数组操作。
var存在变量声明提升,var在{}中是没有作用域的,var定义的变量名可以重复命名。而这些let和const都做了限制
map和forEach都能达到遍历数组的目的。不过map会返回一个新的和原来数组长度一样的数组,而forEech没有返回值
JavaScript共有八种数据类型,分别是 Undefined、Null、Boolean、Number、String、Object、Symbol、BigInt。
其中 Symbol 和 BigInt 是ES6 中新增的数据类型:
这些数据可以分为原始数据类型和引用数据类型:
两种类型的区别在于存储位置的不同:
堆和栈的概念存在于数据结构和操作系统内存中,在数据结构中:
在操作系统中,内存被分为栈区和堆区:
(1)typeof
console.log(typeof 2); // number
console.log(typeof true); // boolean
console.log(typeof 'str'); // string
console.log(typeof []); // object
console.log(typeof function(){}); // function
console.log(typeof {}); // object
console.log(typeof undefined); // undefined
console.log(typeof null); // object
复制代码
其中数组、对象、null都会被判断为object,其他判断都正确。
(2)instanceof
instanceof
可以正确判断对象的类型,其内部运行机制是判断在其原型链中能否找到该类型的原型。
console.log(2 instanceof Number); // false
console.log(true instanceof Boolean); // false
console.log('str' instanceof String); // false
console.log([] instanceof Array); // true
console.log(function(){} instanceof Function); // true
console.log({} instanceof Object); // true
复制代码
可以看到,instanceof
只能正确判断引用数据类型,而不能判断基本数据类型。instanceof
运算符可以用来测试一个对象在其原型链中是否存在一个构造函数的 prototype
属性。
(3) constructor
console.log((2).constructor === Number); // true
console.log((true).constructor === Boolean); // true
console.log(('str').constructor === String); // true
console.log(([]).constructor === Array); // true
console.log((function() {}).constructor === Function); // true
console.log(({}).constructor === Object); // true
复制代码
constructor
有两个作用,一是判断数据的类型,二是对象实例通过 constrcutor
对象访问它的构造函数。需要注意,如果创建一个对象来改变它的原型,constructor
就不能用来判断数据类型了:
function Fn(){};
Fn.prototype = new Array();
var f = new Fn();
console.log(f.constructor===Fn); // false
console.log(f.constructor===Array); // true
复制代码
(4)Object.prototype.toString.call()
Object.prototype.toString.call()
使用 Object 对象的原型方法 toString 来判断数据类型:
var a = Object.prototype.toString;
console.log(a.call(2));
console.log(a.call(true));
console.log(a.call('str'));
console.log(a.call([]));
console.log(a.call(function(){}));
console.log(a.call({}));
console.log(a.call(undefined));
console.log(a.call(null));
复制代码
同样是检测对象obj调用toString方法,obj.toString()的结果和Object.prototype.toString.call(obj)的结果不一样,这是为什么?
这是因为toString是Object的原型方法,而Array、function等类型作为Object的实例,都重写了toString方法。不同的对象类型调用toString方法时,根据原型链的知识,调用的是对应的重写之后的toString方法(function类型返回内容为函数体的字符串,Array类型返回元素组成的字符串…),而不会去调用Object上原型toString方法(返回对象的具体类型),所以采用obj.toString()不能得到其对象类型,只能将obj转换为字符串类型;因此,在想要得到对象的具体类型时,应该调用Object原型上的toString方法。
Object.prototype.toString.call(obj).slice(8,-1) === 'Array';
复制代码
obj.__proto__ === Array.prototype;
复制代码
Array.isArrray(obj);
复制代码
obj instanceof Array
复制代码
Array.prototype.isPrototypeOf(obj)
复制代码
首先 Undefined 和 Null 都是基本数据类型,这两个基本数据类型分别都只有一个值,就是 undefined 和 null。
undefined 代表的含义是未定义,null 代表的含义是空对象。一般变量声明了但还没有定义的时候会返回 undefined,null主要用于赋值给一些可能会返回对象的变量,作为初始化。
undefined 在 JavaScript 中不是一个保留字,这意味着可以使用 undefined 来作为一个变量名,但是这样的做法是非常危险的,它会影响对 undefined 值的判断。我们可以通过一些方法获得安全的 undefined 值,比如说 void 0。
当对这两种类型使用 typeof 进行判断时,Null 类型化会返回 “object”,这是一个历史遗留的问题。当使用双等号对两种类型的值进行比较时会返回 true,使用三个等号时会返回 false。
typeof null 的结果是Object。
在 JavaScript 第一个版本中,所有值都存储在 32 位的单元中,每个单元包含一个小的 类型标签(1-3 bits) 以及当前要存储值的真实数据。类型标签存储在每个单元的低位中,共有五种数据类型:
000: object - 当前存储的数据指向一个对象。
1: int - 当前存储的数据是一个 31 位的有符号整数。
010: double - 当前存储的数据指向一个双精度的浮点数。
100: string - 当前存储的数据指向一个字符串。
110: boolean - 当前存储的数据是布尔值。
复制代码
如果最低位是 1,则类型标签标志位的长度只有一位;如果最低位是 0,则类型标签标志位的长度占三位,为存储其他四种数据类型提供了额外两个 bit 的长度。
有两种特殊数据类型:
那也就是说null的类型标签也是000,和Object的类型标签一样,所以会被判定为Object。
instanceof 运算符用于判断构造函数的 prototype 属性是否出现在对象的原型链中的任何位置。
function myInstanceof(left, right) {
// 获取对象的原型
let proto = Object.getPrototypeOf(left)
// 获取构造函数的 prototype 对象
let prototype = right.prototype;
// 判断构造函数的 prototype 对象是否在对象的原型链上
while (true) {
if (!proto) return false;
if (proto === prototype) return true;
// 如果没有找到,就继续从其原型上找,Object.getPrototypeOf方法用来获取指定对象的原型
proto = Object.getPrototypeOf(proto);
}
}
复制代码
在开发过程中遇到类似这样的问题:
let n1 = 0.1, n2 = 0.2
console.log(n1 + n2) // 0.30000000000000004
复制代码
这里得到的不是想要的结果,要想等于0.3,就要把它进行转化:
(n1 + n2).toFixed(2) // 注意,toFixed为四舍五入
复制代码
toFixed(num)
方法可把 Number 四舍五入为指定小数位数的数字。那为什么会出现这样的结果呢?
计算机是通过二进制的方式存储数据的,所以计算机计算0.1+0.2的时候,实际上是计算的两个数的二进制的和。0.1的二进制是0.0001100110011001100...
(1100循环),0.2的二进制是:0.00110011001100...
(1100循环),这两个数的二进制都是无限循环的数。那JavaScript是如何处理无限循环的二进制小数呢?
一般我们认为数字包括整数和小数,但是在 JavaScript 中只有一种数字类型:Number,它的实现遵循IEEE 754标准,使用64位固定长度来表示,也就是标准的double双精度浮点数。在二进制科学表示法中,双精度浮点数的小数部分最多只能保留52位,再加上前面的1,其实就是保留53位有效数字,剩余的需要舍去,遵从“0舍1入”的原则。
根据这个原则,0.1和0.2的二进制数相加,再转化为十进制数就是:0.30000000000000004
。
下面看一下双精度数是如何保存的:
对于0.1,它的二进制为:
0.00011001100110011001100110011001100110011001100110011001 10011...
复制代码
转为科学计数法(科学计数法的结果就是浮点数):
1.1001100110011001100110011001100110011001100110011001*2^-4
复制代码
可以看出0.1的符号位为0,指数位为-4,小数位为:
1001100110011001100110011001100110011001100110011001
复制代码
那么问题又来了,指数位是负数,该如何保存呢?
IEEE标准规定了一个偏移量,对于指数部分,每次都加这个偏移量进行保存,这样即使指数是负数,那么加上这个偏移量也就是正数了。由于JavaScript的数字是双精度数,这里就以双精度数为例,它的指数部分为11位,能表示的范围就是0~2047,IEEE固定双精度数的偏移量为1023。
-1022~1013
。对于上面的0.1的指数位为-4,-4+1023 = 1019 转化为二进制就是:1111111011
.
所以,0.1表示为:
0 1111111011 1001100110011001100110011001100110011001100110011001
复制代码
说了这么多,是时候该最开始的问题了,如何实现0.1+0.2=0.3呢?
对于这个问题,一个直接的解决方法就是设置一个误差范围,通常称为“机器精度”。对JavaScript来说,这个值通常为2-52,在ES6中,提供了Number.EPSILON
属性,而它的值就是2-52,只要判断0.1+0.2-0.3
是否小于Number.EPSILON
,如果小于,就可以判断为0.1+0.2 ===0.3
function numberepsilon(arg1,arg2){
return Math.abs(arg1 - arg2) < Number.EPSILON;
}
console.log(numberepsilon(0.1 + 0.2, 0.3)); // true
复制代码
因为 undefined 是一个标识符,所以可以被当作变量来使用和赋值,但是这样会影响 undefined 的正常判断。表达式 void ___ 没有返回值,因此返回结果是 undefined。void 并不改变表达式的结果,只是让表达式不返回值。因此可以用 void 0 来获得 undefined。
NaN 指“不是一个数字”(not a number),NaN 是一个“警戒值”(sentinel value,有特殊用途的常规值),用于指出数字类型中的错误情况,即“执行数学运算没有成功,这是失败后返回的结果”。
typeof NaN; // "number"
复制代码
NaN 是一个特殊值,它和自身不相等,是唯一一个非自反(自反,reflexive,即 x === x 不成立)的值。而 NaN !== NaN 为 true。
对于 ==
来说,如果对比双方的类型不一样,就会进行类型转换。假如对比 x
和 y
是否相同,就会进行如下判断流程:
null
和 undefined
,是的话就会返回 true
string
和 number
,是的话就会将字符串转换为 number
1 == '1'
↓
1 == 1
复制代码
boolean
,是的话就会把 boolean
转为 number
再进行判断'1' == true
↓
'1' == 1
↓
1 == 1
复制代码
object
且另一方为 string
、number
或者 symbol
,是的话就会把 object
转为原始类型再进行判断'1' == { name: 'js' } ↓'1' == '[object Object]'
复制代码
其流程图如下:
为了将值转换为相应的基本类型值,抽象操作 ToPrimitive 会首先(通过内部操作 DefaultValue)检查该值是否有valueOf()方法。如果有并且返回基本类型值,就使用该值进行强制类型转换。如果没有就使用 toString() 的返回值(如果存在)来进行强制类型转换。
如果 valueOf() 和 toString() 均不返回基本类型值,会产生 TypeError 错误。
以下这些是假值: • undefined • null • false • +0、-0 和 NaN • ""
假值的布尔强制类型转换结果为 false。从逻辑上说,假值列表以外的都应该是真值。
|| 和 && 首先会对第一个操作数执行条件判断,如果其不是布尔值就先强制转换为布尔类型,然后再执行条件判断。
|| 和 && 返回它们其中一个操作数的值,而非条件判断的结果
在 JavaScript 中,基本类型是没有属性和方法的,但是为了便于操作基本类型的值,在调用基本类型的属性或方法时 JavaScript 会在后台隐式地将基本类型的值转换为对象,如:
const a = "abc";
a.length; // 3
a.toUpperCase(); // "ABC"
复制代码
在访问'abc'.length
时,JavaScript 将'abc'
在后台转换成String('abc')
,然后再访问其length
属性。
JavaScript也可以使用Object
函数显式地将基本类型转换为包装类型:
var a = 'abc'
Object(a) // String {"abc"}
复制代码
也可以使用valueOf
方法将包装类型倒转成基本类型:
var a = 'abc'
var b = Object(a)
var c = b.valueOf() // 'abc'
复制代码
看看如下代码会打印出什么:
var a = new Boolean( false );
if (!a) {
console.log( "Oops" ); // never runs
}
复制代码
答案是什么都不会打印,因为虽然包裹的基本类型是false
,但是false
被包裹成包装类型后就成了对象,所以其非值为false
,所以循环体中的内容不会运行。
首先要介绍ToPrimitive
方法,这是 JavaScript 中每个值隐含的自带的方法,用来将值 (无论是基本类型值还是对象)转换为基本类型值。如果值为基本类型,则直接返回值本身;如果值为对象,其看起来大概是这样:
/**
* @obj 需要转换的对象
* @type 期望的结果类型
*/
ToPrimitive(obj,type)
复制代码
type
的值为number
或者string
。
(1)当type
为number
时规则如下:
obj
的valueOf
方法,如果为原始值,则返回,否则下一步;obj
的toString
方法,后续同上;TypeError
异常。(2)当type
为string
时规则如下:
obj
的toString
方法,如果为原始值,则返回,否则下一步;obj
的valueOf
方法,后续同上;TypeError
异常。可以看出两者的主要区别在于调用toString
和valueOf
的先后顺序。默认情况下:
type
默认为string
;type
默认为number
。总结上面的规则,对于 Date 以外的对象,转换为基本类型的大概规则可以概括为一个函数:
var objToNumber = value => Number(value.valueOf().toString())
objToNumber([]) === 0
objToNumber({}) === NaN
复制代码
而 JavaScript 中的隐式类型转换主要发生在+、-、*、/
以及==、>、<
这些运算符之间。而这些运算符只能操作基本类型值,所以在进行这些运算前的第一步就是将两边的值用ToPrimitive
转换成基本类型,再进行操作。
以下是基本类型的值在不同操作符的情况下隐式转换的规则 (对于对象,其会被ToPrimitive
转换成基本类型,所以最终还是要应用基本类型转换规则):
+
操作符+
操作符的两边有至少一个string
类型变量时,两边的变量都会被隐式转换为字符串;其他情况下两边的变量都会被转换为数字。
1 + '23' // '123'
1 + false // 1
1 + Symbol() // Uncaught TypeError: Cannot convert a Symbol value to a number
'1' + false // '1false'
false + true // 1
复制代码
-
、*
、\\
操作符NaN
也是一个数字
1 * '23' // 23
1 * false // 0
1 / 'aa' // NaN
复制代码
==
操作符操作符两边的值都尽量转成number
:
3 == true // false, 3 转为number为3,true转为number为1
'0' == false //true, '0'转为number为0,false转为number为0
'0' == 0 // '0'转为number为0
复制代码
<
和>
比较符如果两边都是字符串,则比较字母表顺序:
'ca' < 'bd' // false
'a' < 'b' // true
复制代码
其他情况下,转换为数字再比较:
'12' < 13 // true
false > -1 // true
复制代码
以上说的是基本类型的隐式转换,而对象会被ToPrimitive
转换为基本类型再进行转换:
var a = {}
a > 2 // false
复制代码
其对比过程如下:
a.valueOf() // {}, 上面提到过,ToPrimitive默认type为number,所以先valueOf,结果还是个对象,下一步
a.toString() // "[object Object]",现在是一个字符串了
Number(a.toString()) // NaN,根据上面 < 和 > 操作符的规则,要转换成数字
NaN > 2 //false,得出比较结果
复制代码
又比如:
var a = {name:'Jack'}
var b = {age: 18}
a + b // "[object Object][object Object]"
复制代码
运算过程如下:
a.valueOf() // {},上面提到过,ToPrimitive默认type为number,所以先valueOf,结果还是个对象,下一步
a.toString() // "[object Object]"
b.valueOf() // 同理
b.toString() // "[object Object]"
a + b // "[object Object][object Object]"
复制代码
+
操作符什么时候用于字符串的拼接?根据 ES5 规范,如果某个操作数是字符串或者能够通过以下步骤转换为字符串的话,+ 将进行拼接操作。如果其中一个操作数是对象(包括数组),则首先对其调用 ToPrimitive 抽象操作,该抽象操作再调用 [[DefaultValue]],以数字作为上下文。如果不能转换为字符串,则会将其转换为数字类型来进行计算。
简单来说就是,如果 + 的其中一个操作数是字符串(或者通过以上步骤最终得到字符串),则执行字符串拼接,否则执行数字加法。
那么对于除了加法的运算符来说,只要其中一方是数字,那么另一方就会被转为数字。
JavaScript中Number.MAX_SAFE_INTEGER表示最⼤安全数字,计算结果是9007199254740991,即在这个数范围内不会出现精度丢失(⼩数除外)。但是⼀旦超过这个范围,js就会出现计算不准确的情况,这在⼤数计算的时候不得不依靠⼀些第三⽅库进⾏解决,因此官⽅提出了BigInt来解决此问题。
扩展运算符:
let outObj = {
inObj: {a: 1, b: 2}
}
let newObj = {...outObj}
newObj.inObj.a = 2
console.log(outObj) // {inObj: {a: 2, b: 2}}
复制代码
Object.assign():
let outObj = {
inObj: {a: 1, b: 2}
}
let newObj = Object.assign({}, outObj)
newObj.inObj.a = 2
console.log(outObj) // {inObj: {a: 2, b: 2}}
复制代码
可以看到,两者都是浅拷贝。
(1)块级作用域: 块作用域由 { }
包括,let和const具有块级作用域,var不存在块级作用域。块级作用域解决了ES5中的两个问题:
(2)变量提升: var存在变量提升,let和const不存在变量提升,即在变量只能在声明之后使用,否在会报错。
(3)给全局添加属性: 浏览器的全局对象是window,Node的全局对象是global。var声明的变量为全局变量,并且会将该变量添加为全局对象的属性,但是let和const不会。
(4)重复声明: var声明变量时,可以重复声明变量,后声明的同名变量会覆盖之前声明的遍历。const和let不允许重复声明变量。
(5)暂时性死区: 在使用let、const命令声明变量之前,该变量都是不可用的。这在语法上,称为暂时性死区。使用var声明的变量不存在暂时性死区。
(6)初始值设置: 在变量声明时,var 和 let 可以不用设置初始值。而const声明变量必须设置初始值。
(7)指针指向: let和const都是ES6新增的用于创建变量的语法。 let创建的变量是可以更改指针指向(可以重新赋值)。但const声明的变量是不允许改变指针的指向。
区别 | var | let | const |
---|---|---|---|
是否有块级作用域 | × | ✔️ | ✔️ |
是否存在变量提升 | ✔️ | × | × |
是否添加全局属性 | ✔️ | × | × |
能否重复声明变量 | ✔️ | × | × |
是否存在暂时性死区 | × | ✔️ | ✔️ |
是否必须设置初始值 | × | × | ✔️ |
能否改变指针指向 | ✔️ | ✔️ | × |
const保证的并不是变量的值不能改动,而是变量指向的那个内存地址不能改动。对于基本类型的数据(数值、字符串、布尔值),其值就保存在变量指向的那个内存地址,因此等同于常量。
但对于引用类型的数据(主要是对象和数组)来说,变量指向数据的内存地址,保存的只是一个指针,const只能保证这个指针是固定不变的,至于它指向的数据结构是不是可变的,就完全不能控制了。
箭头函数是ES6中的提出来的,它没有prototype,也没有自己的this指向,更不可以使用arguments参数,所以不能New一个箭头函数。
new操作符的实现步骤如下:
所以,上面的第二、三步,箭头函数都是没有办法执行的。
(1)箭头函数比普通函数更加简洁
let fn = () => void doesNotReturn();
复制代码
(2)箭头函数没有自己的this
箭头函数不会创建自己的this, 所以它没有自己的this,它只会在自己作用域的上一层继承this。所以箭头函数中this的指向在它在定义时已经确定了,之后不会改变。
(3)箭头函数继承来的this指向永远不会改变
var id = 'GLOBAL';
var obj = {
id: 'OBJ',
a: function(){
console.log(this.id);
},
b: () => {
console.log(this.id);
}
};
obj.a(); // 'OBJ'
obj.b(); // 'GLOBAL'
new obj.a() // undefined
new obj.b() // Uncaught TypeError: obj.b is not a constructor
复制代码
对象obj的方法b是使用箭头函数定义的,这个函数中的this就永远指向它定义时所处的全局执行环境中的this,即便这个函数是作为对象obj的方法调用,this依旧指向Window对象。需要注意,定义对象的大括号{}
是无法形成一个单独的执行环境的,它依旧是处于全局执行环境中。
(4)call()、apply()、bind()等方法不能改变箭头函数中this的指向
var id = 'Global';
let fun1 = () => {
console.log(this.id)
};
fun1(); // 'Global'
fun1.call({id: 'Obj'}); // 'Global'
fun1.apply({id: 'Obj'}); // 'Global'
fun1.bind({id: 'Obj'})(); // 'Global'
复制代码
(5)箭头函数不能作为构造函数使用
构造函数在new的步骤在上面已经说过了,实际上第二步就是将函数中的this指向该对象。 但是由于箭头函数时没有自己的this的,且this指向外层的执行环境,且不能改变指向,所以不能当做构造函数使用。
(6)箭头函数没有自己的arguments
箭头函数没有自己的arguments对象。在箭头函数中访问arguments实际上获得的是它外层函数的arguments值。
(7)箭头函数没有prototype
(8)箭头函数不能用作Generator函数,不能使用yeild关键字
箭头函数不同于传统JavaScript中的函数,箭头函数并没有属于⾃⼰的this,它所谓的this是捕获其所在上下⽂的 this 值,作为⾃⼰的 this 值,并且由于没有属于⾃⼰的this,所以是不会被new调⽤的,这个所谓的this也不会被改变。
可以⽤Babel理解⼀下箭头函数:
// ES6
const obj = {
getArrow() {
return () => {
console.log(this === obj);
};
}
}
复制代码
转化后:
// ES5,由 Babel 转译
var obj = {
getArrow: function getArrow() {
var _this = this;
return function () {
console.log(_this === obj);
};
}
};
复制代码
(1)对象扩展运算符
对象的扩展运算符(...)用于取出参数对象中的所有可遍历属性,拷贝到当前对象之中。
let bar = { a: 1, b: 2 };
let baz = { ...bar }; // { a: 1, b: 2 }
复制代码
上述方法实际上等价于:
let bar = { a: 1, b: 2 };
let baz = Object.assign({}, bar); // { a: 1, b: 2 }
复制代码
Object.assign
方法用于对象的合并,将源对象(source)
的所有可枚举属性,复制到目标对象(target)
。Object.assign
方法的第一个参数是目标对象,后面的参数都是源对象。(如果目标对象与源对象有同名属性,或多个源对象有同名属性,则后面的属性会覆盖前面的属性)。
同样,如果用户自定义的属性,放在扩展运算符后面,则扩展运算符内部的同名属性会被覆盖掉。
let bar = {a: 1, b: 2};
let baz = {...bar, ...{a:2, b: 4}}; // {a: 2, b: 4}
复制代码
利用上述特性就可以很方便的修改对象的部分属性。在redux
中的reducer
函数规定必须是一个纯函数,reducer
中的state
对象要求不能直接修改,可以通过扩展运算符把修改路径的对象都复制一遍,然后产生一个新的对象返回。
需要注意:扩展运算符对对象实例的拷贝属于浅拷贝。
(2)数组扩展运算符
数组的扩展运算符可以将一个数组转为用逗号分隔的参数序列,且每次只能展开一层数组。
console.log(...[1, 2, 3])
// 1 2 3
console.log(...[1, [2, 3, 4], 5])
// 1 [2, 3, 4] 5
复制代码
下面是数组的扩展运算符的应用:
function add(x, y) {
return x + y;
}
const numbers = [1, 2];
add(...numbers) // 3
复制代码
const arr1 = [1, 2];
const arr2 = [...arr1];
复制代码
要记住:扩展运算符(…)用于取出参数对象中的所有可遍历属性,拷贝到当前对象之中,这里参数对象是个数组,数组里面的所有对象都是基础数据类型,将所有基础数据类型重新拷贝到新的数组中。
如果想在数组内合并数组,可以这样:
const arr1 = ['two', 'three'];const arr2 = ['one', ...arr1, 'four', 'five'];// ["one", "two", "three", "four", "five"]
复制代码
const [first, ...rest] = [1, 2, 3, 4, 5];first // 1rest // [2, 3, 4, 5]
复制代码
需要注意:如果将扩展运算符用于数组赋值,只能放在参数的最后一位,否则会报错。
const [...rest, last] = [1, 2, 3, 4, 5]; // 报错const [first, ...rest, last] = [1, 2, 3, 4, 5]; // 报错
复制代码
[...'hello'] // [ "h", "e", "l", "l", "o" ]
复制代码
比较常见的应用是可以将某些数据结构转为数组:
// arguments对象
function foo() {
const args = [...arguments];
}
复制代码
用于替换es5
中的Array.prototype.slice.call(arguments)
写法。
Math
函数获取数组中特定的值const numbers = [9, 4, 7, 1];
Math.min(...numbers); // 1
Math.max(...numbers); // 9
复制代码
在 Vue3.0 中通过 Proxy
来替换原本的 Object.defineProperty
来实现数据响应式。
Proxy 是 ES6 中新增的功能,它可以用来自定义对象中的操作。
let p = new Proxy(target, handler)
复制代码
target
代表需要添加代理的对象,handler
用来自定义对象中的操作,比如可以用来自定义 set
或者 get
函数。
下面来通过 Proxy
来实现一个数据响应式:
let onWatch = (obj, setBind, getLogger) => {
let handler = {
get(target, property, receiver) {
getLogger(target, property)
return Reflect.get(target, property, receiver)
},
set(target, property, value, receiver) {
setBind(value, property)
return Reflect.set(target, property, value)
}
}
return new Proxy(obj, handler)
}
let obj = { a: 1 }
let p = onWatch(
obj,
(v, property) => {
console.log(`监听到属性${property}改变为${v}`)
},
(target, property) => {
console.log(`'${property}' = ${target[property]}`)
}
)
p.a = 2 // 监听到属性a改变
p.a // 'a' = 2
复制代码
在上述代码中,通过自定义 set
和 get
函数的方式,在原本的逻辑中插入了我们的函数逻辑,实现了在对对象任何属性进行读写时发出通知。
当然这是简单版的响应式实现,如果需要实现一个 Vue 中的响应式,需要在 get
中收集依赖,在 set
派发更新,之所以 Vue3.0 要使用 Proxy
替换原本的 API 原因在于 Proxy
无需一层层递归为每个属性添加代理,一次即可完成以上操作,性能上更好,并且原本的实现有一些数据更新不能监听到,但是 Proxy
可以完美监听到任何方式的数据改变,唯一缺陷就是浏览器的兼容性不好。
解构是 ES6 提供的一种新的提取数据的模式,这种模式能够从对象或数组里有针对性地拿到想要的数值。 1)数组的解构 在解构数组时,以元素的位置为匹配条件来提取想要的数据的:
const [a, b, c] = [1, 2, 3]
复制代码
最终,a、b、c分别被赋予了数组第0、1、2个索引位的值: 数组里的0、1、2索引位的元素值,精准地被映射到了左侧的第0、1、2个变量里去,这就是数组解构的工作模式。还可以通过给左侧变量数组设置空占位的方式,实现对数组中某几个元素的精准提取:
const [a,,c] = [1,2,3]
复制代码
通过把中间位留空,可以顺利地把数组第一位和最后一位的值赋给 a、c 两个变量:
2)对象的解构 对象解构比数组结构稍微复杂一些,也更显强大。在解构对象时,是以属性的名称为匹配条件,来提取想要的数据的。现在定义一个对象:
const stu = {
name: 'Bob',
age: 24
}
复制代码
假如想要解构它的两个自有属性,可以这样:
const { name, age } = stu
复制代码
这样就得到了 name 和 age 两个和 stu 平级的变量:
注意,对象解构严格以属性名作为定位依据,所以就算调换了 name 和 age 的位置,结果也是一样的:
const { age, name } = stu
复制代码
有时会遇到一些嵌套程度非常深的对象:
const school = {
classes: {
stu: {
name: 'Bob',
age: 24,
}
}
}
复制代码
像此处的 name 这个变量,嵌套了四层,此时如果仍然尝试老方法来提取它:
const { name } = school
复制代码
显然是不奏效的,因为 school 这个对象本身是没有 name 这个属性的,name 位于 school 对象的“儿子的儿子”对象里面。要想把 name 提取出来,一种比较笨的方法是逐层解构:
const { classes } = school
const { stu } = classes
const { name } = stu
name // 'Bob'
复制代码
但是还有一种更标准的做法,可以用一行代码来解决这个问题:
const { classes: { stu: { name } }} = school
console.log(name) // 'Bob'
复制代码
可以在解构出来的变量名右侧,通过冒号+{目标属性名}这种形式,进一步解构它,一直解构到拿到目标数据为止。
扩展运算符被用在函数形参上时,它还可以把一个分离的参数序列整合成一个数组:
function mutiple(...args) {
let result = 1;
for (var val of args) {
result *= val;
}
return result;
}
mutiple(1, 2, 3, 4) // 24
复制代码
这里,传入 mutiple 的是四个分离的参数,但是如果在 mutiple 函数里尝试输出 args 的值,会发现它是一个数组:
function mutiple(...args) {
console.log(args)
}
mutiple(1, 2, 3, 4) // [1, 2, 3, 4]
复制代码
这就是 … rest运算符的又一层威力了,它可以把函数的多个入参收敛进一个数组里。这一点经常用于获取函数的多余参数,或者像上面这样处理函数参数个数不确定的情况。
ES6 提出了“模板语法”的概念。在 ES6 以前,拼接字符串是很麻烦的事情:
var name = 'css'
var career = 'coder'
var hobby = ['coding', 'writing']
var finalString = 'my name is ' + name + ', I work as a ' + career + ', I love ' + hobby[0] + ' and ' + hobby[1]
复制代码
仅仅几个变量,写了这么多加号,还要时刻小心里面的空格和标点符号有没有跟错地方。但是有了模板字符串,拼接难度直线下降:
var name = 'css'
var career = 'coder'
var hobby = ['coding', 'writing']
var finalString = `my name is ${name}, I work as a ${career} I love ${hobby[0]} and ${hobby[1]}`
复制代码
字符串不仅更容易拼了,也更易读了,代码整体的质量都变高了。这就是模板字符串的第一个优势——允许用${}的方式嵌入变量。但这还不是问题的关键,模板字符串的关键优势有两个:
基于第一点,可以在模板字符串里无障碍地直接写 html 代码:
let list = `
<ul>
<li>列表项1</li>
<li>列表项2</li>
</ul>
`;
console.log(message); // 正确输出,不存在报错
复制代码
基于第二点,可以把一些简单的计算和调用丢进 ${} 来做:
function add(a, b) {
const finalString = `${a} + ${b} = ${a+b}`
console.log(finalString)
}
add(1, 2) // 输出 '1 + 2 = 3'
复制代码
除了模板语法外, ES6中还新增了一系列的字符串方法用于提升开发效率:
(1)存在性判定:在过去,当判断一个字符/字符串是否在某字符串中时,只能用 indexOf > -1 来做。现在 ES6 提供了三个方法:includes、startsWith、endsWith,它们都会返回一个布尔值来告诉你是否存在。
const son = 'haha'
const father = 'xixi haha hehe'
father.includes(son) // true
复制代码
const father = 'xixi haha hehe'
father.startsWith('haha') // false
father.startsWith('xixi') // true
复制代码
const father = 'xixi haha hehe'
father.endsWith('hehe') // true
复制代码
(2)自动重复:可以使用 repeat 方法来使同一个字符串输出多次(被连续复制多次):
const sourceCode = 'repeat for 3 times;'
const repeated = sourceCode.repeat(3)
console.log(repeated) // repeat for 3 times;repeat for 3 times;repeat for 3 times;
复制代码
new操作符的执行过程:
(1)首先创建了一个新的空对象
(2)设置原型,将对象的原型设置为函数的 prototype 对象。
(3)让函数的 this 指向这个对象,执行构造函数的代码(为这个新对象添加属性)
(4)判断函数的返回值类型,如果是值类型,返回创建的对象。如果是引用类型,就返回这个引用类型的对象。
具体实现:
function objectFactory() {
let newObject = null;
let constructor = Array.prototype.shift.call(arguments);
let result = null;
// 判断参数是否是一个函数
if (typeof constructor !== "function") {
console.error("type error");
return;
}
// 新建一个空对象,对象的原型为构造函数的 prototype 对象
newObject = Object.create(constructor.prototype);
// 将 this 指向新建对象,并执行函数
result = constructor.apply(newObject, arguments);
// 判断返回对象
let flag = result && (typeof result === "object" || typeof result === "function");
// 判断返回结果
return flag ? result : newObject;
}
// 使用方法
objectFactory(构造函数, 初始化参数);
复制代码
Map | Object | |
---|---|---|
意外的键 | Map默认情况不包含任何键,只包含显式插入的键。 | Object 有一个原型, 原型链上的键名有可能和自己在对象上的设置的键名产生冲突。 |
键的类型 | Map的键可以是任意值,包括函数、对象或任意基本类型。 | Object 的键必须是 String 或是Symbol。 |
键的顺序 | Map 中的 key 是有序的。因此,当迭代的时候, Map 对象以插入的顺序返回键值。 | Object 的键是无序的 |
Size | Map 的键值对个数可以轻易地通过size 属性获取 | Object 的键值对个数只能手动计算 |
迭代 | Map 是 iterable 的,所以可以直接被迭代。 | 迭代Object需要以某种方式获取它的键然后才能迭代。 |
性能 | 在频繁增删键值对的场景下表现更好。 | 在频繁添加和删除键值对的场景下未作出优化。 |
(1)Map map本质上就是键值对的集合,但是普通的Object中的键值对中的键只能是字符串。而ES6提供的Map数据结构类似于对象,但是它的键不限制范围,可以是任意类型,是一种更加完善的Hash结构。如果Map的键是一个原始数据类型,只要两个键严格相同,就视为是同一个键。
实际上Map是一个数组,它的每一个数据也都是一个数组,其形式如下:
const map = [
["name","张三"],
["age",18],
]
复制代码
Map数据结构有以下操作方法:
map.size
返回Map结构的成员总数。Map结构原生提供是三个遍历器生成函数和一个遍历方法
const map = new Map([
["foo",1],
["bar",2],
])
for(let key of map.keys()){
console.log(key); // foo bar
}
for(let value of map.values()){
console.log(value); // 1 2
}
for(let items of map.entries()){
console.log(items); // ["foo",1] ["bar",2]
}
map.forEach( (value,key,map) => {
console.log(key,value); // foo 1 bar 2
})
复制代码
(2)WeakMap WeakMap 对象也是一组键值对的集合,其中的键是弱引用的。其键必须是对象,原始数据类型不能作为key值,而值可以是任意的。
该对象也有以下几种方法:
其clear()方法已经被弃用,所以可以通过创建一个空的WeakMap并替换原对象来实现清除。
WeakMap的设计目的在于,有时想在某个对象上面存放一些数据,但是这会形成对于这个对象的引用。一旦不再需要这两个对象,就必须手动删除这个引用,否则垃圾回收机制就不会释放对象占用的内存。
而WeakMap的键名所引用的对象都是弱引用,即垃圾回收机制不将该引用考虑在内。因此,只要所引用的对象的其他引用都被清除,垃圾回收机制就会释放该对象所占用的内存。也就是说,一旦不再需要,WeakMap 里面的键名对象和所对应的键值对会自动消失,不用手动删除引用。
总结:
全局的对象( global objects )或称标准内置对象,不要和 "全局对象(global object)" 混淆。这里说的全局的对象是说在 全局作用域里的对象。全局作用域中的其他对象可以由用户的脚本创建或由宿主程序提供。
标准内置对象的分类:
(1)值属性,这些全局属性返回一个简单值,这些值没有自己的属性和方法。例如 Infinity、NaN、undefined、null 字面量
(2)函数属性,全局函数可以直接调用,不需要在调用时指定所属对象,执行结束后会将结果直接返回给调用者。例如 eval()、parseFloat()、parseInt() 等
(3)基本对象,基本对象是定义或使用其他对象的基础。基本对象包括一般对象、函数对象和错误对象。例如 Object、Function、Boolean、Symbol、Error 等
(4)数字和日期对象,用来表示数字、日期和执行数学计算的对象。例如 Number、Math、Date
(5)字符串,用来表示和操作字符串的对象。例如 String、RegExp
(6)可索引的集合对象,这些对象表示按照索引值来排序的数据集合,包括数组和类型数组,以及类数组结构的对象。例如 Array
(7)使用键的集合对象,这些集合对象在存储数据时会使用到键,支持按照插入顺序来迭代元素。 例如 Map、Set、WeakMap、WeakSet
(8)矢量集合,SIMD 矢量集合中的数据会被组织为一个数据序列。 例如 SIMD 等
(9)结构化数据,这些对象用来表示和操作结构化的缓冲区数据,或使用 JSON 编码的数据。例如 JSON 等
(10)控制抽象对象 例如 Promise、Generator 等
(11)反射。例如 Reflect、Proxy
(12)国际化,为了支持多语言处理而加入 ECMAScript 的对象。例如 Intl、Intl.Collator 等
(13)WebAssembly
(14)其他。例如 arguments
总结: js 中的内置对象主要指的是在程序执行前存在全局作用域里的由 js 定义的一些全局值属性、函数和用来实例化其他对象的构造函数对象。一般经常用到的如全局变量值 NaN、undefined,全局函数如 parseInt()、parseFloat() 用来实例化对象的构造函数如 Date、Object 等,还有提供数学计算的单体内置对象如 Math 对象。
// (1)匹配 16 进制颜色值
var regex = /#([0-9a-fA-F]{6}|[0-9a-fA-F]{3})/g;
// (2)匹配日期,如 yyyy-mm-dd 格式
var regex = /^[0-9]{4}-(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01])$/;
// (3)匹配 qq 号
var regex = /^[1-9][0-9]{4,10}$/g;
// (4)手机号码正则
var regex = /^1[34578]\\d{9}$/g;
// (5)用户名正则
var regex = /^[a-zA-Z\\$][a-zA-Z0-9_\\$]{4,16}$/;
复制代码
JSON 是一种基于文本的轻量级的数据交换格式。它可以被任何的编程语言读取和作为数据格式来传递。
在项目开发中,使用 JSON 作为前后端数据交换的方式。在前端通过将一个符合 JSON 格式的数据结构序列化为 JSON 字符串,然后将它传递到后端,后端通过 JSON 格式的字符串解析后生成对应的数据结构,以此来实现前后端数据的一个传递。
因为 JSON 的语法是基于 js 的,因此很容易将 JSON 和 js 中的对象弄混,但是应该注意的是 JSON 和 js 中的对象不是一回事,JSON 中对象格式更加严格,比如说在 JSON 中属性值不能为函数,不能出现 NaN 这样的属性值等,因此大多数的 js 对象是不符合 JSON 对象的格式的。
在 js 中提供了两个函数来实现 js 数据结构和 JSON 格式的转换处理,
延迟加载就是等页面加载完成之后再加载 JavaScript 文件。 js 延迟加载有助于提高页面加载速度。
一般有以下几种方式:
一个拥有 length 属性和若干索引属性的对象就可以被称为类数组对象,类数组对象和数组类似,但是不能调用数组的方法。常见的类数组对象有 arguments 和 DOM 方法的返回结果,还有一个函数也可以被看作是类数组对象,因为它含有 length 属性值,代表可接收的参数个数。
常见的类数组转换为数组的方法有这样几种:
(1)通过 call 调用数组的 slice 方法来实现转换
Array.prototype.slice.call(arrayLike);
复制代码
(2)通过 call 调用数组的 splice 方法来实现转换
Array.prototype.splice.call(arrayLike, 0);
复制代码
(3)通过 apply 调用数组的 concat 方法来实现转换
Array.prototype.concat.apply([], arrayLike);
复制代码
(4)通过 Array.from 方法来实现转换
Array.from(arrayLike);
复制代码
(1)Unicode
在说Unicode
之前需要先了解一下ASCII
码:ASCII 码(American Standard Code for Information Interchange
)称为美国标准信息交换码。
ASCII
码可以表示的编码有限,要想表示其他语言的编码,还是要使用Unicode
来表示,可以说Unicode
是ASCII
的超集。
Unicode
全称 Unicode Translation Format
,又叫做统一码、万国码、单一码。Unicode
是为了解决传统的字符编码方案的局限而产生的,它为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。
Unicode
的实现方式(也就是编码方式)有很多种,常见的是UTF-8、UTF-16、UTF-32和USC-2。
(2)UTF-8
UTF-8
是使用最广泛的Unicode
编码方式,它是一种可变长的编码方式,可以是1—4个字节不等,它可以完全兼容ASCII
码的128个字符。
注意: UTF-8
是一种编码方式,Unicode
是一个字符集合。
UTF-8
的编码规则:
Unicode
编码,因此对于英文字母,它的Unicode
编码和ACSII
编码一样。Unicode
码 。来看一下具体的Unicode
编号范围与对应的UTF-8
二进制格式 :
编码范围(编号对应的十进制数) | 二进制格式 |
---|---|
0x00—0x7F (0-127) | 0xxxxxxx |
0x80—0x7FF (128-2047) | 110xxxxx 10xxxxxx |
0x800—0xFFFF (2048-65535) | 1110xxxx 10xxxxxx 10xxxxxx |
0x10000—0x10FFFF (65536以上) | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx |
那该如何通过具体的Unicode
编码,进行具体的UTF-8
编码呢?步骤如下:
Unicode
编码的所在的编号范围,进而找到与之对应的二进制格式Unicode
编码转换为二进制数(去掉最高位的0)X
中,如果有X
未填,就设为0来看一个实际的例子: “马” 字的Unicode
编码是:0x9A6C
,整数编号是39532
(1)首选确定了该字符在第三个范围内,它的格式是 1110xxxx 10xxxxxx 10xxxxxx
(2)39532对应的二进制数为1001 1010 0110 1100
(3)将二进制数填入X中,结果是:11101001 10101001 10101100
(3)UTF-16
1. 平面的概念
在了解UTF-16
之前,先看一下平面的概念: Unicode
编码中有很多很多的字符,它并不是一次性定义的,而是分区进行定义的,每个区存放65536(216)个字符,这称为一个平面,目前总共有17 个平面。
最前面的一个平面称为基本平面,它的码点从0 — 216-1,写成16进制就是U+0000 — U+FFFF
,那剩下的16个平面就是辅助平面,码点范围是 U+10000—U+10FFFF
。
2. UTF-16 概念:
UTF-16
也是Unicode
编码集的一种编码形式,把Unicode
字符集的抽象码位映射为16位长的整数(即码元)的序列,用于数据存储或传递。Unicode
字符的码位需要1个或者2个16位长的码元来表示,因此UTF-16
也是用变长字节表示的。
3. UTF-16 编码规则:
U+0000—U+FFFF
的字符(常用字符集),直接用两个字节表示。U+10000—U+10FFFF
之间的字符,需要用四个字节表示。4. 编码识别
那么问题来了,当遇到两个字节时,怎么知道是把它当做一个字符还是和后面的两个字节一起当做一个字符呢?
UTF-16
编码肯定也考虑到了这个问题,在基本平面内,从 U+D800 — U+DFFF
是一个空段,也就是说这个区间的码点不对应任何的字符,因此这些空段就可以用来映射辅助平面的字符。
辅助平面共有 220 个字符位,因此表示这些字符至少需要 20 个二进制位。UTF-16
将这 20 个二进制位分成两半,前 10 位映射在 U+D800 — U+DBFF
,称为高位(H),后 10 位映射在 U+DC00 — U+DFFF
,称为低位(L)。这就相当于,将一个辅助平面的字符拆成了两个基本平面的字符来表示。
因此,当遇到两个字节时,发现它的码点在 U+D800 —U+DBFF
之间,就可以知道,它后面的两个字节的码点应该在 U+DC00 — U+DFFF
之间,这四个字节必须放在一起进行解读。
5. 举例说明
以 "𡠀" 字为例,它的 Unicode
码点为 0x21800
,该码点超出了基本平面的范围,因此需要用四个字节来表示,步骤如下:
0x21800 - 0x10000
0001000110 0000000000
U+D800
对应的二进制数为 1101100000000000
, 将0001000110
填充在它的后10 个二进制位,得到 1101100001000110
,转成 16 进制数为 0xD846
。同理,低位为 0xDC00
,所以这个字的UTF-16
编码为 0xD846 0xDC00
(4) UTF-32
UTF-32
就是字符所对应编号的整数二进制形式,每个字符占四个字节,这个是直接进行转换的。该编码方式占用的储存空间较多,所以使用较少。
比如“马” 字的Unicode编号是:U+9A6C
,整数编号是39532
,直接转化为二进制:1001 1010 0110 1100
,这就是它的UTF-32编码。
(5)总结
Unicode、UTF-8、UTF-16、UTF-32有什么区别?
Unicode
是编码字符集(字符集),而UTF-8
、UTF-16
、UTF-32
是字符集编码(编码规则);UTF-16
使用变长码元序列的编码方式,相较于定长码元序列的UTF-32
算法更复杂,甚至比同样是变长码元序列的UTF-8
也更为复杂,因为其引入了独特的代理对这样的代理机制;UTF-8
需要判断每个字节中的开头标志信息,所以如果某个字节在传送过程中出错了,就会导致后面的字节也会解析出错;而UTF-16
不会判断开头标志,即使错也只会错一个字符,所以容错能力教强;UTF-8
就比UTF-16
节省了很多空间;而如果字符内容全部是中文这样类似的字符或者混合字符中中文占绝大多数,那么UTF-16
就占优势了,可以节省很多空间;现代计算机中数据都是以二进制的形式存储的,即0、1两种状态,计算机对二进制数据进行的运算加减乘除等都是叫位运算,即将符号位共同参与运算的运算。
常见的位运算有以下几种:
运算符 | 描述 | 运算规则 |
---|---|---|
& | 与 | 两个位都为1时,结果才为1 |
` | ` | 或 |
^ | 异或 | 两个位相同为0,相异为1 |
~ | 取反 | 0变1,1变0 |
<< | 左移 | 各二进制位全部左移若干位,高位丢弃,低位补0 |
>> | 右移 | 各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃 |
1. 按位与运算符(&)
定义: 参加运算的两个数据按二进制位进行“与”运算。 运算规则:
0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1
复制代码
总结:两位同时为1,结果才为1,否则结果为0。 例如:3&5 即:
0000 0011
0000 0101
= 0000 0001
复制代码
因此 3&5 的值为1。 注意:负数按补码形式参加按位与运算。
用途:
(1)判断奇偶
只要根据最未位是0还是1来决定,为0就是偶数,为1就是奇数。因此可以用if ((i & 1) == 0)
代替if (i % 2 == 0)
来判断a是不是偶数。
(2)清零
如果想将一个单元清零,即使其全部二进制位为0,只要与一个各位都为零的数值相与,结果为零。
2. 按位或运算符(|)
定义: 参加运算的两个对象按二进制位进行“或”运算。
运算规则:
0 | 0 = 0
0 | 1 = 1
1 | 0 = 1
1 | 1 = 1
复制代码
总结:参加运算的两个对象只要有一个为1,其值为1。 例如:3|5即:
0000 0011
0000 0101
= 0000 0111
复制代码
因此,3|5的值为7。 注意:负数按补码形式参加按位或运算。
3. 异或运算符(^)
定义: 参加运算的两个数据按二进制位进行“异或”运算。
运算规则:
0 ^ 0 = 0
0 ^ 1 = 1
1 ^ 0 = 1
1 ^ 1 = 0
复制代码
总结:参加运算的两个对象,如果两个相应位相同为0,相异为1。 例如:3|5即:
0000 0011
0000 0101
= 0000 0110
复制代码
因此,3^5的值为6。 异或运算的性质:
(a^b)^c == a^(b^c)
(a + b)^c == a^b + b^c
x^x=0,x^0=x
a^b^b=a^0=a
;4. 取反运算符 (~)
定义: 参加运算的一个数据按二进制进行“取反”运算。
运算规则:
~ 1 = 0~ 0 = 1
复制代码
总结:对一个二进制数按位取反,即将0变1,1变0。 例如:~6 即:
0000 0110= 1111 1001
复制代码
在计算机中,正数用原码表示,负数使用补码存储,首先看最高位,最高位1表示负数,0表示正数。此计算机二进制码为负数,最高位为符号位。 当发现按位取反为负数时,就直接取其补码,变为十进制:
0000 0110 = 1111 1001反码:1000 0110补码:1000 0111
复制代码
因此,~6的值为-7。
5. 左移运算符(<<)
定义: 将一个运算对象的各二进制位全部左移若干位,左边的二进制位丢弃,右边补0。 设 a=1010 1110,a = a<< 2 将a的二进制位左移2位、右补0,即得a=1011 1000。 若左移时舍弃的高位不包含1,则每左移一位,相当于该数乘以2。
6. 右移运算符(>>)
定义: 将一个数的各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃。 例如:a=a>>2 将a的二进制位右移2位,左补0 或者 左补1得看被移数是正还是负。 操作数每右移一位,相当于该数除以2。
7. 原码、补码、反码
上面提到了补码、反码等知识,这里就补充一下。 计算机中的有符号数有三种表示方法,即原码、反码和补码。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位,三种表示方法各不相同。
(1)原码
原码就是一个数的二进制数。例如:10的原码为0000 1010
(2)反码
例如:-10
原码:1000 1010
反码:1111 0101
复制代码
(3)补码
例如:-10
原码:1000 1010
反码:1111 0101
补码:1111 0110
复制代码
arguments
是一个对象,它的属性是从 0 开始依次递增的数字,还有callee
和length
等属性,与数组相似;但是它却没有数组常见的方法属性,如forEach
, reduce
等,所以叫它们类数组。
要遍历类数组,有三个方法:
(1)将数组的方法应用到类数组上,这时候就可以使用call
和apply
方法,如:
function foo(){
Array.prototype.forEach.call(arguments, a => console.log(a))
}
复制代码
(2)使用Array.from方法将类数组转化成数组:
function foo(){
const arrArgs = Array.from(arguments)
arrArgs.forEach(a => console.log(a))
}
复制代码
(3)使用展开运算符将类数组转化成数组
function foo(){
const arrArgs = [...arguments]
arrArgs.forEach(a => console.log(a))
}
复制代码
一个拥有 length 属性和若干索引属性的对象就可以被称为类数组对象,类数组对象和数组类似,但是不能调用数组的方法。常见的类数组对象有 arguments 和 DOM 方法的返回结果,函数参数也可以被看作是类数组对象,因为它含有 length属性值,代表可接收的参数个数。
常见的类数组转换为数组的方法有这样几种:
Array.prototype.slice.call(arrayLike);
复制代码
Array.prototype.splice.call(arrayLike, 0);
复制代码
Array.prototype.concat.apply([], arrayLike);
复制代码
Array.from(arrayLike);
复制代码
AJAX是 Asynchronous JavaScript and XML 的缩写,指的是通过 JavaScript 的 异步通信,从服务器获取 XML 文档从中提取数据,再更新当前网页的对应部分,而不用刷新整个网页。
创建AJAX请求的步骤:
const SERVER_URL = "/server";
let xhr = new XMLHttpRequest();
// 创建 Http 请求
xhr.open("GET", url, true);
// 设置状态监听函数
xhr.onreadystatechange = function() {
if (this.readyState !== 4) return;
// 当请求成功时
if (this.status === 200) {
handle(this.response);
} else {
console.error(this.statusText);
}
};
// 设置请求失败时的监听函数
xhr.onerror = function() {
console.error(this.statusText);
};
// 设置请求头信息
xhr.responseType = "json";
xhr.setRequestHeader("Accept", "application/json");
// 发送 Http 请求
xhr.send(null);
复制代码
使用Promise封装AJAX:
// promise 封装实现:
function getJSON(url) {
// 创建一个 promise 对象
let promise = new Promise(function(resolve, reject) {
let xhr = new XMLHttpRequest();
// 新建一个 http 请求
xhr.open("GET", url, true);
// 设置状态的监听函数
xhr.onreadystatechange = function() {
if (this.readyState !== 4) return;
// 当请求成功或失败时,改变 promise 的状态
if (this.status === 200) {
resolve(this.response);
} else {
reject(new Error(this.statusText));
}
};
// 设置错误监听函数
xhr.onerror = function() {
reject(new Error(this.statusText));
};
// 设置响应的数据类型
xhr.responseType = "json";
// 设置请求头信息
xhr.setRequestHeader("Accept", "application/json");
// 发送 http 请求
xhr.send(null);
});
return promise;
}
复制代码
变量提升的表现是,无论在函数中何处位置声明的变量,好像都被提升到了函数的首部,可以在变量声明前访问到而不会报错。
造成变量声明提升的本质原因是 js 引擎在代码执行前有一个解析的过程,创建了执行上下文,初始化了一些代码执行时需要用到的对象。当访问一个变量时,会到当前执行上下文中的作用域链中去查找,而作用域链的首端指向的是当前执行上下文的变量对象,这个变量对象是执行上下文的一个属性,它包含了函数的形参、所有的函数和变量声明,这个对象的是在代码解析的时候创建的。
首先要知道,JS在拿到一个变量或者一个函数的时候,会有两步操作,即解析和执行。
那为什么会进行变量提升呢?主要有以下两个原因:
(1)提高性能 在JS代码执行之前,会进行语法检查和预编译,并且这一操作只进行一次。这么做就是为了提高性能,如果没有这一步,那么每次执行代码前都必须重新解析一遍该变量(函数),而这是没有必要的,因为变量(函数)的代码并不会改变,解析一遍就够了。
在解析的过程中,还会为函数生成预编译代码。在预编译时,会统计声明了哪些变量、创建了哪些函数,并对函数的代码进行压缩,去除注释、不必要的空白等。这样做的好处就是每次执行函数时都可以直接为该函数分配栈空间(不需要再解析一遍去获取代码中声明了哪些变量,创建了哪些函数),并且因为代码压缩的原因,代码执行也更快了。
(2)容错性更好
变量提升可以在一定程度上提高JS的容错性,看下面的代码:
a = 1;var a;console.log(a);
复制代码
如果没有变量提升,这两行代码就会报错,但是因为有了变量提升,这段代码就可以正常执行。
虽然,在可以开发过程中,可以完全避免这样写,但是有时代码很复杂的时候。可能因为疏忽而先使用后定义了,这样也不会影响正常使用。由于变量提升的存在,而会正常运行。
总结:
变量提升虽然有一些优点,但是他也会造成一定的问题,在ES6中提出了let、const来定义变量,它们就没有变量提升的机制。下面看一下变量提升可能会导致的问题:
var tmp = new Date();
function fn(){
console.log(tmp);
if(false){
var tmp = 'hello world';
}
}
fn(); // undefined
复制代码
在这个函数中,原本是要打印出外层的tmp变量,但是因为变量提升的问题,内层定义的tmp被提到函数内部的最顶部,相当于覆盖了外层的tmp,所以打印结果为undefined。
var tmp = 'hello world';
for (var i = 0; i < tmp.length; i++) {
console.log(tmp[i]);
}
console.log(i); // 11
复制代码
由于遍历时定义的i会变量提升成为一个全局变量,在函数结束之后不会被销毁,所以打印出来11。
尾调用指的是函数的最后一步调用另一个函数。代码执行是基于执行栈的,所以当在一个函数里调用另一个函数时,会保留当前的执行上下文,然后再新建另外一个执行上下文加入栈中。使用尾调用的话,因为已经是函数的最后一步,所以这时可以不必再保留当前的执行上下文,从而节省了内存,这就是尾调用优化。但是 ES6 的尾调用优化只在严格模式下开启,正常模式是无效的。
ES6 Module和CommonJS模块的区别:
ES6 Module和CommonJS模块的共同点:
1)DOM 节点的获取
DOM 节点的获取的API及使用:
getElementById // 按照 id 查询
getElementsByTagName // 按照标签名查询
getElementsByClassName // 按照类名查询
querySelectorAll // 按照 css 选择器查询
// 按照 id 查询
var imooc = document.getElementById('imooc') // 查询到 id 为 imooc 的元素
// 按照标签名查询
var pList = document.getElementsByTagName('p') // 查询到标签为 p 的集合
console.log(divList.length)
console.log(divList[0])
// 按照类名查询
var moocList = document.getElementsByClassName('mooc') // 查询到类名为 mooc 的集合
// 按照 css 选择器查询
var pList = document.querySelectorAll('.mooc') // 查询到类名为 mooc 的集合
复制代码
2)DOM 节点的创建
创建一个新节点,并把它添加到指定节点的后面。 已知的 HTML 结构如下:
<html>
<head>
<title>DEMO</title>
</head>
<body>
<div id="container">
<h1 id="title">我是标题</h1>
</div>
</body>
</html>
复制代码
要求添加一个有内容的 span 节点到 id 为 title 的节点后面,做法就是:
// 首先获取父节点
var container = document.getElementById('container')
// 创建新节点
var targetSpan = document.createElement('span')
// 设置 span 节点的内容
targetSpan.innerHTML = 'hello world'
// 把新创建的元素塞进父节点里去
container.appendChild(targetSpan)
复制代码
3)DOM 节点的删除
删除指定的 DOM 节点, 已知的 HTML 结构如下:
<html>
<head>
<title>DEMO</title>
</head>
<body>
<div id="container">
<h1 id="title">我是标题</h1>
</div>
</body>
</html>
复制代码
需要删除 id 为 title 的元素,做法是:
// 获取目标元素的父元素
var container = document.getElementById('container')
// 获取目标元素
var targetNode = document.getElementById('title')
// 删除目标元素
container.removeChild(targetNode)
复制代码
或者通过子节点数组来完成删除:
// 获取目标元素的父元素var container = document.getElementById('container')// 获取目标元素var targetNode = container.childNodes[1]// 删除目标元素container.removeChild(targetNode)
复制代码
4)修改 DOM 元素
修改 DOM 元素这个动作可以分很多维度,比如说移动 DOM 元素的位置,修改 DOM 元素的属性等。
将指定的两个 DOM 元素交换位置, 已知的 HTML 结构如下:
<html>
<head>
<title>DEMO</title>
</head>
<body>
<div id="container">
<h1 id="title">我是标题</h1>
<p id="content">我是内容</p>
</div>
</body>
</html>
复制代码
现在需要调换 title 和 content 的位置,可以考虑 insertBefore 或者 appendChild:
// 获取父元素
var container = document.getElementById('container')
// 获取两个需要被交换的元素
var title = document.getElementById('title')
var content = document.getElementById('content')
// 交换两个元素,把 content 置于 title 前面
container.insertBefore(content, title)
复制代码
use strict 是一种 ECMAscript5 添加的(严格模式)运行模式,这种模式使得 Javascript 在更严格的条件下运行。设立严格模式的目的如下:
区别:
两者对比:强类型语言在速度上可能略逊色于弱类型语言,但是强类型语言带来的严谨性可以有效地帮助避免许多错误。
(1)解释型语言 使用专门的解释器对源程序逐行解释成特定平台的机器码并立即执行。是代码在执行时才被解释器一行行动态翻译和执行,而不是在执行之前就完成翻译。解释型语言不需要事先编译,其直接将源代码解释成机器码并立即执行,所以只要某一平台提供了相应的解释器即可运行该程序。其特点总结如下
(2)编译型语言 使用专门的编译器,针对特定的平台,将高级语言源代码一次性的编译成可被该平台硬件执行的机器码,并包装成该平台所能识别的可执行性程序的格式。在编译型语言写的程序执行之前,需要一个专门的编译过程,把源代码编译成机器语言的文件,如exe格式的文件,以后要再运行时,直接使用编译结果即可,如直接运行exe文件。因为只需编译一次,以后运行时不需要编译,所以编译型语言执行效率高。其特点总结如下:
两者主要区别在于: 前者源程序编译后即可在该平台运行,后者是在运行期间才编译。所以前者运行速度快,后者跨平台性好。
for…of 是ES6新增的遍历方式,允许遍历一个含有iterator接口的数据结构(数组、对象等)并且返回各项的值,和ES3中的for…in的区别如下
总结: for...in 循环主要是为了遍历对象而生,不适用于遍历数组;for...of 循环可以用来遍历数组、类数组对象,字符串、Set、Map 以及 Generator 对象。
for…of是作为ES6新增的遍历方式,允许遍历一个含有iterator接口的数据结构(数组、对象等)并且返回各项的值,普通的对象用for..of遍历是会报错的。
如果需要遍历的对象是类数组对象,用Array.from转成数组即可。
var obj = {
0:'one',
1:'two',
length: 2
};
obj = Array.from(obj);
for(var k of obj){
console.log(k)
}
复制代码
如果不是类数组对象,就给对象添加一个[Symbol.iterator]属性,并指向一个迭代器即可。
//方法一:
var obj = {
a:1,
b:2,
c:3
};
obj[Symbol.iterator] = function(){
var keys = Object.keys(this);
var count = 0;
return {
next(){
if(count<keys.length){
return {value: obj[keys[count++]],done:false};
}else{
return {value:undefined,done:true};
}
}
}
};
for(var k of obj){
console.log(k);
}
// 方法二
var obj = {
a:1,
b:2,
c:3
};
obj[Symbol.iterator] = function*(){
var keys = Object.keys(obj);
for(var k of keys){
yield [k,obj[k]]
}
};
for(var [k,v] of obj){
console.log(k,v);
}
复制代码
(1)AJAX Ajax 即“AsynchronousJavascriptAndXML”(异步 JavaScript 和 XML),是指一种创建交互式网页应用的网页开发技术。它是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。通过在后台与服务器进行少量数据交换,Ajax 可以使网页实现异步更新。这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行更新。传统的网页(不使用 Ajax)如果需要更新内容,必须重载整个网页页面。其缺点如下:
(2)Fetch fetch号称是AJAX的替代品,是在ES6出现的,使用了ES6中的promise对象。Fetch是基于promise设计的。Fetch的代码结构比起ajax简单多。fetch不是ajax的进一步封装,而是原生js,没有使用XMLHttpRequest对象。
fetch的优点:
fetch的缺点:
(3)Axios Axios 是一种基于Promise封装的HTTP客户端,其特点如下:
方法 | 是否改变原数组 | 特点 |
---|---|---|
forEach() | 否 | 数组方法,不改变原数组,没有返回值 |
map() | 否 | 数组方法,不改变原数组,有返回值,可链式调用 |
filter() | 否 | 数组方法,过滤数组,返回包含符合条件的元素的数组,可链式调用 |
for...of | 否 | for...of遍历具有Iterator迭代器的对象的属性,返回的是数组的元素、对象的属性值,不能遍历普通的obj对象,将异步循环变成同步循环 |
every() 和 some() | 否 | 数组方法,some()只要有一个是true,便返回true;而every()只要有一个是false,便返回false. |
find() 和 findIndex() | 否 | 数组方法,find()返回的是第一个符合条件的值;findIndex()返回的是第一个返回条件的值的索引值 |
reduce() 和 reduceRight() | 否 | 数组方法,reduce()对数组正序操作;reduceRight()对数组逆序操作 |
遍历方法的详细解释:《细数JavaScript中那些遍历和循环》
这方法都是用来遍历数组的,两者区别如下:
在JavaScript中是使用构造函数来新建一个对象的,每一个构造函数的内部都有一个 prototype 属性,它的属性值是一个对象,这个对象包含了可以由该构造函数的所有实例共享的属性和方法。当使用构造函数新建一个对象后,在这个对象的内部将包含一个指针,这个指针指向构造函数的 prototype 属性对应的值,在 ES5 中这个指针被称为对象的原型。一般来说不应该能够获取到这个值的,但是现在浏览器中都实现了 proto 属性来访问这个属性,但是最好不要使用这个属性,因为它不是规范中规定的。ES5 中新增了一个 Object.getPrototypeOf() 方法,可以通过这个方法来获取对象的原型。
当访问一个对象的属性时,如果这个对象内部不存在这个属性,那么它就会去它的原型对象里找这个属性,这个原型对象又会有自己的原型,于是就这样一直找下去,也就是原型链的概念。原型链的尽头一般来说都是 Object.prototype 所以这就是新建的对象为什么能够使用 toString() 等方法的原因。
特点: JavaScript 对象是通过引用来传递的,创建的每个新对象实体中并没有一份属于自己的原型副本。当修改原型时,与之相关的对象也会继承这一改变。
function Person(name) {
this.name = name
}
// 修改原型
Person.prototype.getName = function() {}
var p = new Person('hello')
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // true
// 重写原型
Person.prototype = {
getName: function() {}
}
var p = new Person('hello')
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // false
复制代码
可以看到修改原型的时候p的构造函数不是指向Person了,因为直接给Person的原型对象直接用对象赋值时,它的构造函数指向的了根构造函数Object,所以这时候p.constructor === Object
,而不是p.constructor === Person
。要想成立,就要用constructor指回来:
Person.prototype = {
getName: function() {}
}
var p = new Person('hello')
p.constructor = Person
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // true
复制代码
p.__proto__ // Person.prototype
Person.prototype.__proto__ // Object.prototype
p.__proto__.__proto__ //Object.prototype
p.__proto__.constructor.prototype.__proto__ // Object.prototype
Person.prototype.constructor.prototype.__proto__ // Object.prototype
p1.__proto__.constructor // Person
Person.prototype.constructor // Person
复制代码
由于Object
是构造函数,原型链终点是Object.prototype.__proto__
,而Object.prototype.__proto__=== null // true
,所以,原型链的终点是null
。原型链上的所有原型都是对象,所有的对象最终都是由Object
构造的,而Object.prototype
的下一级是Object.prototype.__proto__
。
使用后hasOwnProperty()
方法来判断属性是否属于原型链的属性:
function iterate(obj){
var res=[];
for(var key in obj){
if(obj.hasOwnProperty(key))
res.push(key+': '+obj[key]);
}
return res;
}
复制代码
闭包是指有权访问另一个函数作用域中变量的函数,创建闭包的最常见的方式就是在一个函数内创建另一个函数,创建的函数可以访问到当前函数的局部变量。
闭包有两个常用的用途;
比如,函数 A 内部有一个函数 B,函数 B 可以访问到函数 A 中的变量,那么函数 B 就是闭包。
function A() {
let a = 1
window.B = function () {
console.log(a)
}
}
A()
B() // 1
复制代码
在 JS 中,闭包存在的意义就是让我们可以间接访问函数内部的变量。经典面试题:循环中使用闭包解决 var 定义函数的问题
for (var i = 1; i <= 5; i++) {
setTimeout(function timer() {
console.log(i)
}, i * 1000)
}
复制代码
首先因为 setTimeout
是个异步函数,所以会先把循环全部执行完毕,这时候 i
就是 6 了,所以会输出一堆 6。解决办法有三种:
for (var i = 1; i <= 5; i++) { ;(function(j) { setTimeout(function timer() { console.log(j) }, j * 1000) })(i)}
复制代码
在上述代码中,首先使用了立即执行函数将 i
传入函数内部,这个时候值就被固定在了参数 j
上面不会改变,当下次执行 timer
这个闭包的时候,就可以使用外部函数的变量 j
,从而达到目的。
setTimeout
的第三个参数,这个参数会被当成 timer
函数的参数传入。for (var i = 1; i <= 5; i++) {
setTimeout(
function timer(j) {
console.log(j)
},
i * 1000,
i
)
}
复制代码
let
定义 i
了来解决问题了,这个也是最为推荐的方式for (let i = 1; i <= 5; i++) {
setTimeout(function timer() {
console.log(i)
}, i * 1000)
}
复制代码
1)全局作用域和函数作用域
(1)全局作用域
(2)函数作用域
2)块级作用域
{ }
包裹的代码片段)作用域链: 在当前作用域中查找所需变量,但是该作用域没有这个变量,那这个变量就是自由变量。如果在自己作用域找不到该变量就去父级作用域查找,依次向上级作用域查找,直到访问到window对象就被终止,这一层层的关系就是作用域链。
作用域链的作用是保证对执行环境有权访问的所有变量和函数的有序访问,通过作用域链,可以访问到外层环境的变量和函数。
作用域链的本质上是一个指向变量对象的指针列表。变量对象是一个包含了执行环境中所有变量和函数的对象。作用域链的前端始终都是当前执行上下文的变量对象。全局执行上下文的变量对象(也就是全局对象)始终是作用域链的最后一个对象。
当查找一个变量时,如果当前执行环境中没有找到,可以沿着作用域链向后查找。
1. 执行上下文类型
(1)全局执行上下文
任何不在函数内部的都是全局执行上下文,它首先会创建一个全局的window对象,并且设置this的值等于这个全局对象,一个程序中只有一个全局执行上下文。
(2)函数执行上下文
当一个函数被调用时,就会为该函数创建一个新的执行上下文,函数的上下文可以有任意多个。
(3)eval
函数执行上下文
执行在eval函数中的代码会有属于他自己的执行上下文,不过eval函数不常使用,不做介绍。
2. 执行上下文栈
let a = 'Hello World!';
function first() {
console.log('Inside first function');
second();
console.log('Again inside first function');
}
function second() {
console.log('Inside second function');
}
first();
//执行顺序
//先执行second(),在执行first()
复制代码
3. 创建执行上下文
创建执行上下文有两个阶段:创建阶段和执行阶段
1)创建阶段
(1)this绑定
(2)创建词法环境组件
(3)创建变量环境组件
2)执行阶段 此阶段会完成对变量的分配,最后执行完代码。
简单来说执行上下文就是指:
在执行一点JS代码之前,需要先解析代码。解析的时候会先创建一个全局执行上下文环境,先把代码中即将执行的变量、函数声明都拿出来,变量先赋值为undefined,函数先声明好可使用。这一步执行完了,才开始正式的执行程序。
在一个函数执行之前,也会创建一个函数执行上下文环境,跟全局执行上下文类似,不过函数执行上下文会多出this、arguments和函数的参数。
this
,arguments
注: 由于字数限制,剩余内容在下篇进行总结哦。
this 是执行上下文中的一个属性,它指向最后一次调用这个方法的对象。在实际开发中,this 的指向可以通过四种调用模式来判断。
这四种方式,使用构造器调用模式的优先级最高,然后是 apply、call 和 bind 调用模式,然后是方法调用模式,然后是函数调用模式。
它们的作用一模一样,区别仅在于传入参数的形式的不同。
(1)call 函数的实现步骤:
Function.prototype.myCall = function(context) {
// 判断调用对象
if (typeof this !== "function") {
console.error("type error");
}
// 获取参数
let args = [...arguments].slice(1),
result = null;
// 判断 context 是否传入,如果未传入则设置为 window
context = context || window;
// 将调用函数设为对象的方法
context.fn = this;
// 调用函数
result = context.fn(...args);
// 将属性删除
delete context.fn;
return result;
};
复制代码
(2)apply 函数的实现步骤:
Function.prototype.myApply = function(context) {
// 判断调用对象是否为函数
if (typeof this !== "function") {
throw new TypeError("Error");
}
let result = null;
// 判断 context 是否存在,如果未传入则为 window
context = context || window;
// 将函数设为对象的方法
context.fn = this;
// 调用方法
if (arguments[1]) {
result = context.fn(...arguments[1]);
} else {
result = context.fn();
}
// 将属性删除
delete context.fn;
return result;
};
复制代码
(3)bind 函数的实现步骤:
Function.prototype.myBind = function(context) {
// 判断调用对象是否为函数
if (typeof this !== "function") {
throw new TypeError("Error");
}
// 获取参数
var args = [...arguments].slice(1),
fn = this;
return function Fn() {
// 根据调用方式,传入不同绑定值
return fn.apply(
this instanceof Fn ? this : context,
args.concat(...arguments)
);
};
};
复制代码
JavaScript中的异步机制可以分为以下几种:
(1)setTimeout
console.log('script start') //1. 打印 script start
setTimeout(function(){
console.log('settimeout') // 4. 打印 settimeout
}) // 2. 调用 setTimeout 函数,并定义其完成后执行的回调函数
console.log('script end') //3. 打印 script start
// 输出顺序:script start->script end->settimeout
复制代码
(2)Promise
Promise本身是同步的立即执行函数, 当在executor中执行resolve或者reject的时候, 此时是异步操作, 会先执行then/catch等,当主栈完成后,才会去调用resolve/reject中存放的方法执行,打印p的时候,是打印的返回结果,一个Promise实例。
console.log('script start')
let promise1 = new Promise(function (resolve) {
console.log('promise1')
resolve()
console.log('promise1 end')
}).then(function () {
console.log('promise2')
})
setTimeout(function(){
console.log('settimeout')
})
console.log('script end')
// 输出顺序: script start->promise1->promise1 end->script end->promise2->settimeout
复制代码
当JS主线程执行到Promise对象时:
(3)async/await
async function async1(){
console.log('async1 start');
await async2();
console.log('async1 end')
}
async function async2(){
console.log('async2')
}
console.log('script start');
async1();
console.log('script end')
// 输出顺序:script start->async1 start->async2->script end->async1 end
复制代码
async 函数返回一个 Promise 对象,当函数执行的时候,一旦遇到 await 就会先返回,等到触发的异步操作完成,再执行函数体内后面的语句。可以理解为,是让出了线程,跳出了 async 函数体。
例如:
async function func1() {
return 1
}
console.log(func1())
复制代码
func1的运行结果其实就是一个Promise对象。因此也可以使用then来处理后续逻辑。
func1().then(res => {
console.log(res); // 30
})
复制代码
await的含义为等待,也就是 async 函数需要等待await后的函数执行完成并且有了返回结果(Promise对象)之后,才能继续执行下面的代码。await通过返回一个Promise对象来实现同步的效果。
Promise是异步编程的一种解决方案,它是一个对象,可以获取异步操作的消息,他的出现大大改善了异步编程的困境,避免了地狱回调,它比传统的解决方案回调函数和事件更合理和更强大。
所谓Promise,简单说就是一个容器,里面保存着某个未来才会结束的事件(通常是一个异步操作)的结果。从语法上说,Promise 是一个对象,从它可以获取异步操作的消息。Promise 提供统一的 API,各种异步操作都可以用同样的方法进行处理。
(1)Promise的实例有三个状态:
当把一件事情交给promise时,它的状态就是Pending,任务完成了状态就变成了Resolved、没有完成失败了就变成了Rejected。
(2)Promise的实例有两个过程:
注意:一旦从进行状态变成为其他状态就永远不能更改状态了。
Promise的特点:
pending
(进行中)、fulfilled
(已成功)、rejected
(已失败)。只有异步操作的结果,可以决定当前是哪一种状态,任何其他操作都无法改变这个状态,这也是promise这个名字的由来——“承诺”;pending
变为fulfilled
,从pending
变为rejected
。这时就称为resolved
(已定型)。如果改变已经发生了,你再对promise对象添加回调函数,也会立即得到这个结果。这与事件(event)完全不同,事件的特点是:如果你错过了它,再去监听是得不到结果的。Promise的缺点:
总结: Promise 对象是异步编程的一种解决方案,最早由社区提出。Promise 是一个构造函数,接收一个函数作为参数,返回一个 Promise 实例。一个 Promise 实例有三种状态,分别是pending、resolved 和 rejected,分别代表了进行中、已成功和已失败。实例的状态只能由 pending 转变 resolved 或者rejected 状态,并且状态一经改变,就凝固了,无法再被改变了。
状态的改变是通过 resolve() 和 reject() 函数来实现的,可以在异步操作结束后调用这两个函数改变 Promise 实例的状态,它的原型上定义了一个 then 方法,使用这个 then 方法可以为两个状态的改变注册回调函数。这个回调函数属于微任务,会在本轮事件循环的末尾执行。
注意: 在构造 Promise
的时候,构造函数内部的代码是立即执行的
(1)创建Promise对象
Promise对象代表一个异步操作,有三种状态:pending(进行中)、fulfilled(已成功)和rejected(已失败)。
Promise构造函数接受一个函数作为参数,该函数的两个参数分别是resolve
和reject
。
const promise = new Promise(function(resolve, reject) {
// ... some code
if (/* 异步操作成功 */){
resolve(value);
} else {
reject(error);
}
});
复制代码
一般情况下都会使用new Promise()
来创建promise对象,但是也可以使用promise.resolve
和promise.reject
这两个方法:
Promise.resolve(value)
的返回值也是一个promise对象,可以对返回值进行.then调用,代码如下:
Promise.resolve(11).then(function(value){
console.log(value); // 打印出11
});
复制代码
resolve(11)
代码中,会让promise对象进入确定(resolve
状态),并将参数11
传递给后面的then
所指定的onFulfilled
函数;
创建promise对象可以使用new Promise
的形式创建对象,也可以使用Promise.resolve(value)
的形式创建promise对象;
Promise.reject
也是new Promise
的快捷形式,也创建一个promise对象。代码如下:
Promise.reject(new Error(“我错了,请原谅俺!!”));
复制代码
就是下面的代码new Promise的简单形式:
new Promise(function(resolve,reject){
reject(new Error("我错了!"));
});
复制代码
下面是使用resolve方法和reject方法:
function testPromise(ready) {
return new Promise(function(resolve,reject){
if(ready) {
resolve("hello world");
}else {
reject("No thanks");
}
});
};
// 方法调用
testPromise(true).then(function(msg){
console.log(msg);
},function(error){
console.log(error);
});
复制代码
上面的代码的含义是给testPromise
方法传递一个参数,返回一个promise对象,如果为true
的话,那么调用promise对象中的resolve()
方法,并且把其中的参数传递给后面的then
第一个函数内,因此打印出 “hello world
”, 如果为false
的话,会调用promise对象中的reject()
方法,则会进入then
的第二个函数内,会打印No thanks
;
(2)Promise方法
Promise有五个常用的方法:then()、catch()、all()、race()、finally。下面就来看一下这些方法。
当Promise执行的内容符合成功条件时,调用resolve
函数,失败就调用reject
函数。Promise创建完了,那该如何调用呢?
promise.then(function(value) {
// success
}, function(error) {
// failure
});
复制代码
then
方法可以接受两个回调函数作为参数。第一个回调函数是Promise对象的状态变为resolved
时调用,第二个回调函数是Promise对象的状态变为rejected
时调用。其中第二个参数可以省略。 then
方法返回的是一个新的Promise实例(不是原来那个Promise实例)。因此可以采用链式写法,即then
方法后面再调用另一个then方法。
当要写有顺序的异步事件时,需要串行时,可以这样写:
let promise = new Promise((resolve,reject)=>{
ajax('first').success(function(res){
resolve(res);
})
})
promise.then(res=>{
return new Promise((resovle,reject)=>{
ajax('second').success(function(res){
resolve(res)
})
})
}).then(res=>{
return new Promise((resovle,reject)=>{
ajax('second').success(function(res){
resolve(res)
})
})
}).then(res=>{
})
复制代码
那当要写的事件没有顺序或者关系时,还如何写呢?可以使用all
方法来解决。
2. catch()
Promise对象除了有then方法,还有一个catch方法,该方法相当于then
方法的第二个参数,指向reject
的回调函数。不过catch
方法还有一个作用,就是在执行resolve
回调函数时,如果出现错误,抛出异常,不会停止运行,而是进入catch
方法中。
p.then((data) => {
console.log('resolved',data);
},(err) => {
console.log('rejected',err);
}
);
p.then((data) => {
console.log('resolved',data);
}).catch((err) => {
console.log('rejected',err);
});
复制代码
3. all()
all
方法可以完成并行任务, 它接收一个数组,数组的每一项都是一个promise
对象。当数组中所有的promise
的状态都达到resolved
的时候,all
方法的状态就会变成resolved
,如果有一个状态变成了rejected
,那么all
方法的状态就会变成rejected
。
javascript
let promise1 = new Promise((resolve,reject)=>{
setTimeout(()=>{
resolve(1);
},2000)
});
let promise2 = new Promise((resolve,reject)=>{
setTimeout(()=>{
resolve(2);
},1000)
});
let promise3 = new Promise((resolve,reject)=>{
setTimeout(()=>{
resolve(3);
},3000)
});
Promise.all([promise1,promise2,promise3]).then(res=>{
console.log(res);
//结果为:[1,2,3]
})
复制代码
调用all
方法时的结果成功的时候是回调函数的参数也是一个数组,这个数组按顺序保存着每一个promise对象resolve
执行时的值。
(4)race()
race
方法和all
一样,接受的参数是一个每项都是promise
的数组,但是与all
不同的是,当最先执行完的事件执行完之后,就直接返回该promise
对象的值。如果第一个promise
对象状态变成resolved
,那自身的状态变成了resolved
;反之第一个promise
变成rejected
,那自身状态就会变成rejected
。
let promise1 = new Promise((resolve,reject)=>{
setTimeout(()=>{
reject(1);
},2000)
});
let promise2 = new Promise((resolve,reject)=>{
setTimeout(()=>{
resolve(2);
},1000)
});
let promise3 = new Promise((resolve,reject)=>{
setTimeout(()=>{
resolve(3);
},3000)
});
Promise.race([promise1,promise2,promise3]).then(res=>{
console.log(res);
//结果:2
},rej=>{
console.log(rej)};
)
复制代码
那么race
方法有什么实际作用呢?当要做一件事,超过多长时间就不做了,可以用这个方法来解决:
Promise.race([promise1,timeOutPromise(5000)]).then(res=>{})
复制代码
5. finally()
finally
方法用于指定不管 Promise 对象最后状态如何,都会执行的操作。该方法是 ES2018 引入标准的。
promise
.then(result => {···})
.catch(error => {···})
.finally(() => {···});
复制代码
上面代码中,不管promise
最后的状态,在执行完then
或catch
指定的回调函数以后,都会执行finally
方法指定的回调函数。
下面是一个例子,服务器使用 Promise 处理请求,然后使用finally
方法关掉服务器。
server.listen(port)
.then(function () {
// ...
})
.finally(server.stop);
复制代码
finally
方法的回调函数不接受任何参数,这意味着没有办法知道,前面的 Promise 状态到底是fulfilled
还是rejected
。这表明,finally
方法里面的操作,应该是与状态无关的,不依赖于 Promise 的执行结果。finally
本质上是then
方法的特例:
promise
.finally(() => {
// 语句
});
// 等同于
promise
.then(
result => {
// 语句
return result;
},
error => {
// 语句
throw error;
}
);
复制代码
上面代码中,如果不使用finally
方法,同样的语句需要为成功和失败两种情况各写一次。有了finally
方法,则只需要写一次。
在工作中经常会碰到这样一个需求,比如我使用ajax发一个A请求后,成功后拿到数据,需要把数据传给B请求;那么需要如下编写代码:
let fs = require('fs')
fs.readFile('./a.txt','utf8',function(err,data){
fs.readFile(data,'utf8',function(err,data){
fs.readFile(data,'utf8',function(err,data){
console.log(data)
})
})
})
复制代码
上面的代码有如下缺点:
Promise
出现之后,代码变成这样:
let fs = require('fs')
function read(url){
return new Promise((resolve,reject)=>{
fs.readFile(url,'utf8',function(error,data){
error && reject(error)
resolve(data)
})
})
}
read('./a.txt').then(data=>{
return read(data)
}).then(data=>{
return read(data)
}).then(data=>{
console.log(data)
})
复制代码
这样代码看起了就简洁了很多,解决了地狱回调的问题。
(1)Promise.all Promise.all
可以将多个Promise
实例包装成一个新的Promise实例。同时,成功和失败的返回值是不同的,成功的时候返回的是一个结果数组,而失败的时候则返回最先被reject失败状态的值。
Promise.all中传入的是数组,返回的也是是数组,并且会将进行映射,传入的promise对象返回的值是按照顺序在数组中排列的,但是注意的是他们执行的顺序并不是按照顺序的,除非可迭代对象为空。
需要注意,Promise.all获得的成功结果的数组里面的数据顺序和Promise.all接收到的数组顺序是一致的,这样当遇到发送多个请求并根据请求顺序获取和使用数据的场景,就可以使用Promise.all来解决。
(2)Promise.race
顾名思义,Promse.race就是赛跑的意思,意思就是说,Promise.race([p1, p2, p3])里面哪个结果获得的快,就返回那个结果,不管结果本身是成功状态还是失败状态。当要做一件事,超过多长时间就不做了,可以用这个方法来解决:
Promise.race([promise1,timeOutPromise(5000)]).then(res=>{})
复制代码
async/await其实是Generator
的语法糖,它能实现的效果都能用then链来实现,它是为优化then链而开发出来的。从字面上来看,async是“异步”的简写,await则为等待,所以很好理解async 用于申明一个 function 是异步的,而 await 用于等待一个异步方法执行完成。当然语法上强制规定await只能出现在asnyc函数中,先来看看async函数返回了什么:
async function testAsy(){
return 'hello world';
}
let result = testAsy();
console.log(result)
复制代码
所以,async 函数返回的是一个 Promise 对象。async 函数(包含函数语句、函数表达式、Lambda表达式)会返回一个 Promise 对象,如果在函数中 return
一个直接量,async 会把这个直接量通过 Promise.resolve()
封装成 Promise 对象。
async 函数返回的是一个 Promise 对象,所以在最外层不能用 await 获取其返回值的情况下,当然应该用原来的方式:then()
链来处理这个 Promise 对象,就像这样:
async function testAsy(){
return 'hello world'
}
let result = testAsy()
console.log(result)
result.then(v=>{
console.log(v) // hello world
})
复制代码
那如果 async 函数没有返回值,又该如何?很容易想到,它会返回 Promise.resolve(undefined)
。
联想一下 Promise 的特点——无等待,所以在没有 await
的情况下执行 async 函数,它会立即执行,返回一个 Promise 对象,并且,绝不会阻塞后面的语句。这和普通返回 Promise 对象的函数并无二致。
注意:Promise.resolve(x)
可以看作是 new Promise(resolve => resolve(x))
的简写,可以用于快速封装字面量对象或其他对象,将其封装成 Promise 实例。
await 在等待什么呢? 一般来说,都认为 await 是在等待一个 async 函数完成。不过按语法说明,await 等待的是一个表达式,这个表达式的计算结果是 Promise 对象或者其它值(换句话说,就是没有特殊限定)。
因为 async 函数返回一个 Promise 对象,所以 await 可以用于等待一个 async 函数的返回值——这也可以说是 await 在等 async 函数,但要清楚,它等的实际是一个返回值。注意到 await 不仅仅用于等 Promise 对象,它可以等任意表达式的结果,所以,await 后面实际是可以接普通函数调用或者直接量的。所以下面这个示例完全可以正确运行:
function getSomething() {
return "something";
}
async function testAsync() {
return Promise.resolve("hello async");
}
async function test() {
const v1 = await getSomething();
const v2 = await testAsync();
console.log(v1, v2);
}
test();
复制代码
await 表达式的运算结果取决于它等的是什么。
来看一个例子:
function testAsy(x){
return new Promise(resolve=>{setTimeout(() => {
resolve(x);
}, 3000)
}
)
}
async function testAwt(){
let result = await testAsy('hello world');
console.log(result); // 3秒钟之后出现hello world
console.log('cuger') // 3秒钟之后出现cug
}
testAwt();
console.log('cug') //立即输出cug
复制代码
这就是 await 必须用在 async 函数中的原因。async 函数调用不会造成阻塞,它内部所有的阻塞都被封装在一个 Promise 对象中异步执行。await暂停当前async的执行,所以'cug''最先输出,hello world'和‘cuger’是3秒钟后同时出现的。
单一的 Promise 链并不能发现 async/await 的优势,但是,如果需要处理由多个 Promise 组成的 then 链的时候,优势就能体现出来了(很有意思,Promise 通过 then 链来解决多层回调的问题,现在又用 async/await 来进一步优化它)。
假设一个业务,分多个步骤完成,每个步骤都是异步的,而且依赖于上一个步骤的结果。仍然用 setTimeout
来模拟异步操作:
/**
* 传入参数 n,表示这个函数执行的时间(毫秒)
* 执行的结果是 n + 200,这个值将用于下一步骤
*/
function takeLongTime(n) {
return new Promise(resolve => {
setTimeout(() => resolve(n + 200), n);
});
}
function step1(n) {
console.log(`step1 with ${n}`);
return takeLongTime(n);
}
function step2(n) {
console.log(`step2 with ${n}`);
return takeLongTime(n);
}
function step3(n) {
console.log(`step3 with ${n}`);
return takeLongTime(n);
}
复制代码
现在用 Promise 方式来实现这三个步骤的处理:
function doIt() {
console.time("doIt");
const time1 = 300;
step1(time1)
.then(time2 => step2(time2))
.then(time3 => step3(time3))
.then(result => {
console.log(`result is ${result}`);
console.timeEnd("doIt");
});
}
doIt();
// c:\\var\\test>node --harmony_async_await .
// step1 with 300
// step2 with 500
// step3 with 700
// result is 900
// doIt: 1507.251ms
复制代码
输出结果 result
是 step3()
的参数 700 + 200
= 900
。doIt()
顺序执行了三个步骤,一共用了 300 + 500 + 700 = 1500
毫秒,和 console.time()/console.timeEnd()
计算的结果一致。
如果用 async/await 来实现呢,会是这样:
async function doIt() {
console.time("doIt");
const time1 = 300;
const time2 = await step1(time1);
const time3 = await step2(time2);
const result = await step3(time3);
console.log(`result is ${result}`);
console.timeEnd("doIt");
}
doIt();
复制代码
结果和之前的 Promise 实现是一样的,但是这个代码看起来是不是清晰得多,几乎跟同步代码一样
async function fn(){
try{
let a = await Promise.reject('error')
}catch(error){
console.log(error)
}
}
复制代码
以下代码就是一个回调函数的例子:
ajax(url, () => {
// 处理逻辑
})
复制代码
回调函数有一个致命的弱点,就是容易写出回调地狱(Callback hell)。假设多个请求存在依赖性,可能会有如下代码:
ajax(url, () => {
// 处理逻辑
ajax(url1, () => {
// 处理逻辑
ajax(url2, () => {
// 处理逻辑
})
})
})
复制代码
以上代码看起来不利于阅读和维护,当然,也可以把函数分开来写:
function firstAjax() {
ajax(url1, () => {
// 处理逻辑
secondAjax()
})
}
function secondAjax() {
ajax(url2, () => {
// 处理逻辑
})
}
ajax(url, () => {
// 处理逻辑
firstAjax()
})
复制代码
以上的代码虽然看上去利于阅读了,但是还是没有解决根本问题。回调地狱的根本问题就是:
当然,回调函数还存在着别的几个缺点,比如不能使用 try catch
捕获错误,不能直接 return
。
异步编程当然少不了定时器了,常见的定时器函数有 setTimeout
、setInterval
、requestAnimationFrame
。最常用的是setTimeout
,很多人认为 setTimeout
是延时多久,那就应该是多久后执行。
其实这个观点是错误的,因为 JS 是单线程执行的,如果前面的代码影响了性能,就会导致 setTimeout
不会按期执行。当然了,可以通过代码去修正 setTimeout
,从而使定时器相对准确:
let period = 60 * 1000 * 60 * 2
let startTime = new Date().getTime()
let count = 0
let end = new Date().getTime() + period
let interval = 1000
let currentInterval = interval
function loop() {
count++
// 代码执行所消耗的时间
let offset = new Date().getTime() - (startTime + count * interval);
let diff = end - new Date().getTime()
let h = Math.floor(diff / (60 * 1000 * 60))
let hdiff = diff % (60 * 1000 * 60)
let m = Math.floor(hdiff / (60 * 1000))
let mdiff = hdiff % (60 * 1000)
let s = mdiff / (1000)
let sCeil = Math.ceil(s)
let sFloor = Math.floor(s)
// 得到下一次循环所消耗的时间
currentInterval = interval - offset
console.log('时:'+h, '分:'+m, '毫秒:'+s, '秒向上取整:'+sCeil, '代码执行时间:'+offset, '下次循环间隔'+currentInterval)
setTimeout(loop, currentInterval)
}
setTimeout(loop, currentInterval)
复制代码
接下来看 setInterval
,其实这个函数作用和 setTimeout
基本一致,只是该函数是每隔一段时间执行一次回调函数。
通常来说不建议使用 setInterval
。第一,它和 setTimeout
一样,不能保证在预期的时间执行任务。第二,它存在执行累积的问题,请看以下伪代码
function demo() {
setInterval(function(){
console.log(2)
},1000)
sleep(2000)
}
demo()
复制代码
以上代码在浏览器环境中,如果定时器执行过程中出现了耗时操作,多个回调函数会在耗时操作结束以后同时执行,这样可能就会带来性能上的问题。
如果有循环定时器的需求,其实完全可以通过 requestAnimationFrame
来实现:
function setInterval(callback, interval) {
let timer
const now = Date.now
let startTime = now()
let endTime = startTime
const loop = () => {
timer = window.requestAnimationFrame(loop)
endTime = now()
if (endTime - startTime >= interval) {
startTime = endTime = now()
callback(timer)
}
}
timer = window.requestAnimationFrame(loop)
return timer
}
let a = 0
setInterval(timer => {
console.log(1)
a++
if (a === 3) cancelAnimationFrame(timer)
}, 1000)
复制代码
首先 requestAnimationFrame
自带函数节流功能,基本可以保证在 16.6 毫秒内只执行一次(不掉帧的情况下),并且该函数的延时效果是精确的,没有其他定时器时间不准的问题,当然你也可以通过该函数来实现 setTimeout
。
一般使用字面量的形式直接创建对象,但是这种创建方式对于创建大量相似对象的时候,会产生大量的重复代码。但 js和一般的面向对象的语言不同,在 ES6 之前它没有类的概念。但是可以使用函数来进行模拟,从而产生出可复用的对象创建方式,常见的有以下几种:
(1)第一种是工厂模式,工厂模式的主要工作原理是用函数来封装创建对象的细节,从而通过调用函数来达到复用的目的。但是它有一个很大的问题就是创建出来的对象无法和某个类型联系起来,它只是简单的封装了复用代码,而没有建立起对象和类型间的关系。
(2)第二种是构造函数模式。js 中每一个函数都可以作为构造函数,只要一个函数是通过 new 来调用的,那么就可以把它称为构造函数。执行构造函数首先会创建一个对象,然后将对象的原型指向构造函数的 prototype 属性,然后将执行上下文中的 this 指向这个对象,最后再执行整个函数,如果返回值不是对象,则返回新建的对象。因为 this 的值指向了新建的对象,因此可以使用 this 给对象赋值。构造函数模式相对于工厂模式的优点是,所创建的对象和构造函数建立起了联系,因此可以通过原型来识别对象的类型。但是构造函数存在一个缺点就是,造成了不必要的函数对象的创建,因为在 js 中函数也是一个对象,因此如果对象属性中如果包含函数的话,那么每次都会新建一个函数对象,浪费了不必要的内存空间,因为函数是所有的实例都可以通用的。
(3)第三种模式是原型模式,因为每一个函数都有一个 prototype 属性,这个属性是一个对象,它包含了通过构造函数创建的所有实例都能共享的属性和方法。因此可以使用原型对象来添加公用属性和方法,从而实现代码的复用。这种方式相对于构造函数模式来说,解决了函数对象的复用问题。但是这种模式也存在一些问题,一个是没有办法通过传入参数来初始化值,另一个是如果存在一个引用类型如 Array 这样的值,那么所有的实例将共享一个对象,一个实例对引用类型值的改变会影响所有的实例。
(4)第四种模式是组合使用构造函数模式和原型模式,这是创建自定义类型的最常见方式。因为构造函数模式和原型模式分开使用都存在一些问题,因此可以组合使用这两种模式,通过构造函数来初始化对象的属性,通过原型对象来实现函数方法的复用。这种方法很好的解决了两种模式单独使用时的缺点,但是有一点不足的就是,因为使用了两种不同的模式,所以对于代码的封装性不够好。
(5)第五种模式是动态原型模式,这一种模式将原型方法赋值的创建过程移动到了构造函数的内部,通过对属性是否存在的判断,可以实现仅在第一次调用函数时对原型对象赋值一次的效果。这一种方式很好地对上面的混合模式进行了封装。
(6)第六种模式是寄生构造函数模式,这一种模式和工厂模式的实现基本相同,我对这个模式的理解是,它主要是基于一个已有的类型,在实例化时对实例化的对象进行扩展。这样既不用修改原来的构造函数,也达到了扩展对象的目的。它的一个缺点和工厂模式一样,无法实现对象的识别。
(1)第一种是以原型链的方式来实现继承,但是这种实现方式存在的缺点是,在包含有引用类型的数据时,会被所有的实例对象所共享,容易造成修改的混乱。还有就是在创建子类型的时候不能向超类型传递参数。
(2)第二种方式是使用借用构造函数的方式,这种方式是通过在子类型的函数中调用超类型的构造函数来实现的,这一种方法解决了不能向超类型传递参数的缺点,但是它存在的一个问题就是无法实现函数方法的复用,并且超类型原型定义的方法子类型也没有办法访问到。
(3)第三种方式是组合继承,组合继承是将原型链和借用构造函数组合起来使用的一种方式。通过借用构造函数的方式来实现类型的属性的继承,通过将子类型的原型设置为超类型的实例来实现方法的继承。这种方式解决了上面的两种模式单独使用时的问题,但是由于我们是以超类型的实例来作为子类型的原型,所以调用了两次超类的构造函数,造成了子类型的原型中多了很多不必要的属性。
(4)第四种方式是原型式继承,原型式继承的主要思路就是基于已有的对象来创建新的对象,实现的原理是,向函数中传入一个对象,然后返回一个以这个对象为原型的对象。这种继承的思路主要不是为了实现创造一种新的类型,只是对某个对象实现一种简单继承,ES5 中定义的 Object.create() 方法就是原型式继承的实现。缺点与原型链方式相同。
(5)第五种方式是寄生式继承,寄生式继承的思路是创建一个用于封装继承过程的函数,通过传入一个对象,然后复制一个对象的副本,然后对象进行扩展,最后返回这个对象。这个扩展的过程就可以理解是一种继承。这种继承的优点就是对一个简单对象实现继承,如果这个对象不是自定义类型时。缺点是没有办法实现函数的复用。
(6)第六种方式是寄生式组合继承,组合继承的缺点就是使用超类型的实例做为子类型的原型,导致添加了不必要的原型属性。寄生式组合继承的方式是使用超类型的原型的副本来作为子类型的原型,这样就避免了创建不必要的属性。
(1)垃圾回收的概念
垃圾回收:JavaScript代码运行时,需要分配内存空间来储存变量和值。当变量不在参与运行时,就需要系统收回被占用的内存空间,这就是垃圾回收。
回收机制:
(2)垃圾回收的方式
浏览器通常使用的垃圾回收方法有两种:标记清除,引用计数。 1)标记清除
2)引用计数
obj1
和obj2
通过属性进行相互引用,两个对象的引用次数都是2。当使用循环计数时,由于函数执行完后,两个对象都离开作用域,函数执行结束,obj1
和obj2
还将会继续存在,因此它们的引用次数永远不会是0,就会引起循环引用。function fun() {
let obj1 = {};
let obj2 = {};
obj1.a = obj2; // obj1 引用 obj2
obj2.a = obj1; // obj2 引用 obj1
}
复制代码
这种情况下,就要手动释放变量占用的内存:
obj1.a = null
obj2.a = null
复制代码
(3)减少垃圾回收
虽然浏览器可以进行垃圾自动回收,但是当代码比较复杂时,垃圾回收所带来的代价比较大,所以应该尽量减少垃圾回收。
object
进行优化: 对象尽量复用,对于不再使用的对象,就将其设置为null,尽快被回收。以下四种情况会造成内存的泄漏:
Post 和 Get 是 HTTP 请求的两种方法,其区别如下:
HTTP Request Header 常见的请求头:
HTTP Responses Header 常见的响应头:
常见的 Content-Type 属性值有以下四种:
(1)application/x-www-form-urlencoded:浏览器的原生 form 表单,如果不设置 enctype 属性,那么最终就会以 application/x-www-form-urlencoded 方式提交数据。该种方式提交的数据放在 body 里面,数据按照 key1=val1&key2=val2 的方式进行编码,key 和 val 都进行了 URL转码。
(2)multipart/form-data:该种方式也是一个常见的 POST 提交方式,通常表单上传文件时使用该种方式。
(3)application/json:服务器消息主体是序列化后的 JSON 字符串。
(4)text/xml:该种方式主要用来提交 XML 格式的数据。
服务器为了提高网站访问速度,对之前访问的部分页面指定缓存机制,当客户端在此对这些页面进行请求,服务器会根据缓存内容判断页面与之前是否相同,若相同便直接返回304,此时客户端调用缓存内容,不必进行二次下载。
状态码304不应该认为是一种错误,而是对客户端有缓存情况下服务端的一种响应。
搜索引擎蜘蛛会更加青睐内容源更新频繁的网站。通过特定时间内对网站抓取返回的状态码来调节对该网站的抓取频次。若网站在一定时间内一直处于304的状态,那么蜘蛛可能会降低对网站的抓取次数。相反,若网站变化的频率非常之快,每次抓取都能获取新内容,那么日积月累,的回访率也会提高。
产生较多304状态码的原因:
304状态码出现过多会造成以下问题:
OPTIONS是除了GET和POST之外的其中一种 HTTP请求方法。
OPTIONS方法是用于请求获得由Request-URI
标识的资源在请求/响应的通信过程中可以使用的功能选项。通过这个方法,客户端可以在采取具体资源请求之前,决定对该资源采取何种必要措施,或者了解服务器的性能。该请求方法的响应不能缓存。
OPTIONS请求方法的主要用途有两个:
HTTP 1.0和 HTTP 1.1 有以下区别:
【1】队头堵塞:
队头阻塞是由 HTTP 基本的“请求 - 应答”模型所导致的。HTTP 规定报文必须是“一发一收”,这就形成了一个先进先出的“串行”队列。队列里的请求是没有优先级的,只有入队的先后顺序,排在最前面的请求会被最优先处理。如果队首的请求因为处理的太慢耽误了时间,那么队列里后面的所有请求也不得不跟着一起等待,结果就是其他的请求承担了不应有的时间成本,造成了队头堵塞的现象。
HTTP和HTTPS协议的主要区别如下:
实际上HTTP协议规范并没有对get方法请求的url长度进行限制,这个限制是特定的浏览器及服务器对它的限制。 IE对URL长度的限制是2083字节(2K+35)。由于IE浏览器对URL长度的允许值是最小的,所以开发过程中,只要URL不超过2083字节,那么在所有浏览器中工作都不会有问题。
GET的长度值 = URL(2083)- (你的Domain+Path)-2(2是get请求中?=两个字符的长度)
复制代码
下面看一下主流浏览器对get方法中url的长度限制范围:
主流的服务器对get方法中url的长度限制范围:
根据上面的数据,可以知道,get方法中的URL长度最长不超过2083个字符,这样所有的浏览器和服务器都可能正常工作。
(1)解析URL: 首先会对 URL 进行解析,分析所需要使用的传输协议和请求的资源的路径。如果输入的 URL 中的协议或者主机名不合法,将会把地址栏中输入的内容传递给搜索引擎。如果没有问题,浏览器会检查 URL 中是否出现了非法字符,如果存在非法字符,则对非法字符进行转义后再进行下一过程。
(2)缓存判断: 浏览器会判断所请求的资源是否在缓存里,如果请求的资源在缓存里并且没有失效,那么就直接使用,否则向服务器发起新的请求。
(3)DNS解析: 下一步首先需要获取的是输入的 URL 中的域名的 IP 地址,首先会判断本地是否有该域名的 IP 地址的缓存,如果有则使用,如果没有则向本地 DNS 服务器发起请求。本地 DNS 服务器也会先检查是否存在缓存,如果没有就会先向根域名服务器发起请求,获得负责的顶级域名服务器的地址后,再向顶级域名服务器请求,然后获得负责的权威域名服务器的地址后,再向权威域名服务器发起请求,最终获得域名的 IP 地址后,本地 DNS 服务器再将这个 IP 地址返回给请求的用户。用户向本地 DNS 服务器发起请求属于递归请求,本地 DNS 服务器向各级域名服务器发起请求属于迭代请求。
(4)获取MAC地址: 当浏览器得到 IP 地址后,数据传输还需要知道目的主机 MAC 地址,因为应用层下发数据给传输层,TCP 协议会指定源端口号和目的端口号,然后下发给网络层。网络层会将本机地址作为源地址,获取的 IP 地址作为目的地址。然后将下发给数据链路层,数据链路层的发送需要加入通信双方的 MAC 地址,本机的 MAC 地址作为源 MAC 地址,目的 MAC 地址需要分情况处理。通过将 IP 地址与本机的子网掩码相与,可以判断是否与请求主机在同一个子网里,如果在同一个子网里,可以使用 APR 协议获取到目的主机的 MAC 地址,如果不在一个子网里,那么请求应该转发给网关,由它代为转发,此时同样可以通过 ARP 协议来获取网关的 MAC 地址,此时目的主机的 MAC 地址应该为网关的地址。
(5)TCP三次握手: 下面是 TCP 建立连接的三次握手的过程,首先客户端向服务器发送一个 SYN 连接请求报文段和一个随机序号,服务端接收到请求后向服务器端发送一个 SYN ACK报文段,确认连接请求,并且也向客户端发送一个随机序号。客户端接收服务器的确认应答后,进入连接建立的状态,同时向服务器也发送一个ACK 确认报文段,服务器端接收到确认后,也进入连接建立状态,此时双方的连接就建立起来了。
(6)HTTPS握手: 如果使用的是 HTTPS 协议,在通信前还存在 TLS 的一个四次握手的过程。首先由客户端向服务器端发送使用的协议的版本号、一个随机数和可以使用的加密方法。服务器端收到后,确认加密的方法,也向客户端发送一个随机数和自己的数字证书。客户端收到后,首先检查数字证书是否有效,如果有效,则再生成一个随机数,并使用证书中的公钥对随机数加密,然后发送给服务器端,并且还会提供一个前面所有内容的 hash 值供服务器端检验。服务器端接收后,使用自己的私钥对数据解密,同时向客户端发送一个前面所有内容的 hash 值供客户端检验。这个时候双方都有了三个随机数,按照之前所约定的加密方法,使用这三个随机数生成一把秘钥,以后双方通信前,就使用这个秘钥对数据进行加密后再传输。
(7)返回数据: 当页面请求发送到服务器端后,服务器端会返回一个 html 文件作为响应,浏览器接收到响应后,开始对 html 文件进行解析,开始页面的渲染过程。
(8)页面渲染: 浏览器首先会根据 html 文件构建 DOM 树,根据解析到的 css 文件构建 CSSOM 树,如果遇到 script 标签,则判端是否含有 defer 或者 async 属性,要不然 script 的加载和执行会造成页面的渲染的阻塞。当 DOM 树和 CSSOM 树建立好后,根据它们来构建渲染树。渲染树构建好后,会根据渲染树来进行布局。布局完成后,最后使用浏览器的 UI 接口对页面进行绘制。这个时候整个页面就显示出来了。
(9)TCP四次挥手: 最后一步是 TCP 断开连接的四次挥手过程。若客户端认为数据发送完成,则它需要向服务端发送连接释放请求。服务端收到连接释放请求后,会告诉应用层要释放 TCP 链接。然后会发送 ACK 包,并进入 CLOSE_WAIT 状态,此时表明客户端到服务端的连接已经释放,不再接收客户端发的数据了。但是因为 TCP 连接是双向的,所以服务端仍旧可以发送数据给客户端。服务端如果此时还有没发完的数据会继续发送,完毕后会向客户端发送连接释放请求,然后服务端便进入 LAST-ACK 状态。客户端收到释放请求后,向服务端发送确认应答,此时客户端进入 TIME-WAIT 状态。该状态会持续 2MSL(最大段生存期,指报文段在网络中生存的时间,超时会被抛弃) 时间,若该时间段内没有服务端的重发请求的话,就进入 CLOSED 状态。当服务端收到确认应答后,也便进入 CLOSED 状态。
HTTP1.0 中默认是在每次请求/应答,客户端和服务器都要新建一个连接,完成之后立即断开连接,这就是短连接。当使用Keep-Alive模式时,Keep-Alive功能使客户端到服务器端的连接持续有效,当出现对服务器的后继请求时,Keep-Alive功能避免了建立或者重新建立连接,这就是长连接。其使用方法如下:
Connection: keep-alive
字段。若想断开keep-alive连接,需发送Connection:close
字段;Connection:close
首部字段。Keep-Alive的建立过程:
服务端自动断开过程(也就是没有keep-alive):
客户端请求断开连接过程:
开启Keep-Alive的优点:
开启Keep-Alive的缺点:
HTTP 1
下,浏览器对一个域名下最大TCP连接数为6,所以会请求多次。可以用多域名部署解决。这样可以提高同时请求的数目,加快页面图片的获取速度。HTTP 2
下,可以一瞬间加载出来很多资源,因为,HTTP2支持多路复用,可以在一个TCP连接中发送多个HTTP请求。HTTP2的头部压缩是HPACK算法。在客户端和服务器两端建立“字典”,用索引号表示重复的字符串,采用哈夫曼编码来压缩整数和字符串,可以达到50%~90%的高压缩率。
具体来说:
例如下图中的两个请求, 请求一发送了所有的头部字段,第二个请求则只需要发送差异数据,这样可以减少冗余数据,降低开销。
请求报⽂有4部分组成:
其中: (1)请求⾏包括:请求⽅法字段、URL字段、HTTP协议版本字段。它们⽤空格分隔。例如,GET /index.html HTTP/1.1。 (2)请求头部:请求头部由关键字/值对组成,每⾏⼀对,关键字和值⽤英⽂冒号“:”分隔
(3)请求体: post put等请求携带的数据
请求报⽂有4部分组成:
HTTP 是超文本传输协议,它定义了客户端和服务器之间交换报文的格式和方式,默认使用 80 端口。它使用 TCP 作为传输层协议,保证了数据传输的可靠性。
HTTP协议具有以下优点:
HTTP协议具有以下缺点:
(1)通信使用明文(不加密),内容可能会被窃听; (2)不验证通信方的身份,因此有可能遭遇伪装; (3)无法证明报文的完整性,所以有可能已遭篡改;
HTTP/3基于UDP协议实现了类似于TCP的多路复用数据流、传输可靠性等功能,这套功能被称为QUIC协议。
HTTP 协议是基于 TCP/IP,并且使用了请求-应答的通信模式,所以性能的关键就在这两点里。
HTTP协议有两种连接模式,一种是持续连接,一种非持续连接。 (1)非持续连接指的是服务器必须为每一个请求的对象建立和维护一个全新的连接。 (2)持续连接下,TCP 连接默认不关闭,可以被多个请求复用。采用持续连接的好处是可以避免每次建立 TCP 连接三次握手时所花费的时间。
对于不同版本的采用不同的连接方式:
HTTP/1.1 采用了长连接的方式,这使得管道(pipeline)网络传输成为了可能。
管道(pipeline)网络传输是指:可以在同一个 TCP 连接里面,客户端可以发起多个请求,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。但是服务器还是按照顺序回应请求。如果前面的回应特别慢,后面就会有许多请求排队等着。这称为队头堵塞。
HTTP 传输的报文必须是一发一收,但是,里面的任务被放在一个任务队列中串行执行,一旦队首的请求处理太慢,就会阻塞后面请求的处理。这就是HTTP队头阻塞问题。
队头阻塞的解决方案: (1)并发连接:对于一个域名允许分配多个长连接,那么相当于增加了任务队列,不至于一个队伍的任务阻塞其它所有任务。 (2)域名分片:将域名分出很多二级域名,它们都指向同样的一台服务器,能够并发的长连接数变多,解决了队头阻塞的问题。
以下面的URL为例:www.aspxfans.com:8080/news/index.…
从上面的URL可以看出,一个完整的URL包括以下几部分:
强缓存:
协商缓存:
超文本传输安全协议(Hypertext Transfer Protocol Secure,简称:HTTPS)是一种通过计算机网络进行安全通信的传输协议。HTTPS经由HTTP进行通信,利用SSL/TLS来加密数据包。HTTPS的主要目的是提供对网站服务器的身份认证,保护交换数据的隐私与完整性。 HTTP协议采用明文传输信息,存在信息窃听、信息篡改和信息劫持的风险,而协议TLS/SSL具有身份验证、信息加密和完整性校验的功能,可以避免此类问题发生。
安全层的主要职责就是对发起的HTTP请求的数据进行加密操作 和 对接收到的HTTP的内容进行解密操作。
TLS/SSL全称安全传输层协议(Transport Layer Security), 是介于TCP和HTTP之间的一层安全协议,不影响原有的TCP协议和HTTP协议,所以使用HTTPS基本上不需要对HTTP页面进行太多的改造。
TLS/SSL的功能实现主要依赖三类基本算法:散列函数hash、对称加密、非对称加密。这三类算法的作用如下:
(1)散列函数hash
常见的散列函数有MD5、SHA1、SHA256。该函数的特点是单向不可逆,对输入数据非常敏感,输出的长度固定,任何数据的修改都会改变散列函数的结果,可以用于防止信息篡改并验证数据的完整性。
特点: 在信息传输过程中,散列函数不能三都实现信息防篡改,由于传输是明文传输,中间人可以修改信息后重新计算信息的摘要,所以需要对传输的信息和信息摘要进行加密。
(2)对称加密
对称加密的方法是,双方使用同一个秘钥对数据进行加密和解密。但是对称加密的存在一个问题,就是如何保证秘钥传输的安全性,因为秘钥还是会通过网络传输的,一旦秘钥被其他人获取到,那么整个加密过程就毫无作用了。 这就要用到非对称加密的方法。
常见的对称加密算法有AES-CBC、DES、3DES、AES-GCM等。相同的秘钥可以用于信息的加密和解密。掌握秘钥才能获取信息,防止信息窃听,其通讯方式是一对一。
特点: 对称加密的优势就是信息传输使用一对一,需要共享相同的密码,密码的安全是保证信息安全的基础,服务器和N个客户端通信,需要维持N个密码记录且不能修改密码。
(3)非对称加密
非对称加密的方法是,我们拥有两个秘钥,一个是公钥,一个是私钥。公钥是公开的,私钥是保密的。用私钥加密的数据,只有对应的公钥才能解密,用公钥加密的数据,只有对应的私钥才能解密。我们可以将公钥公布出去,任何想和我们通信的客户, 都可以使用我们提供的公钥对数据进行加密,这样我们就可以使用私钥进行解密,这样就能保证数据的安全了。但是非对称加密有一个缺点就是加密的过程很慢,因此如果每次通信都使用非对称加密的方式的话,反而会造成等待时间过长的问题。
常见的非对称加密算法有RSA、ECC、DH等。秘钥成对出现,一般称为公钥(公开)和私钥(保密)。公钥加密的信息只有私钥可以解开,私钥加密的信息只能公钥解开,因此掌握公钥的不同客户端之间不能相互解密信息,只能和服务器进行加密通信,服务器可以实现一对多的的通信,客户端也可以用来验证掌握私钥的服务器的身份。
特点: 非对称加密的特点就是信息一对多,服务器只需要维持一个私钥就可以和多个客户端进行通信,但服务器发出的信息能够被所有的客户端解密,且该算法的计算复杂,加密的速度慢。
综合上述算法特点,TLS/SSL的工作方式就是客户端使用非对称加密与服务器进行通信,实现身份的验证并协商对称加密使用的秘钥。对称加密算法采用协商秘钥对信息以及信息摘要进行加密通信,不同节点之间采用的对称秘钥不同,从而保证信息只能通信双方获取。这样就解决了两个方法各自存在的问题。
现在的方法也不一定是安全的,因为没有办法确定得到的公钥就一定是安全的公钥。可能存在一个中间人,截取了对方发给我们的公钥,然后将他自己的公钥发送给我们,当我们使用他的公钥加密后发送的信息,就可以被他用自己的私钥解密。然后他伪装成我们以同样的方法向对方发送信息,这样我们的信息就被窃取了,然而自己还不知道。为了解决这样的问题,可以使用数字证书。
首先使用一种 Hash 算法来对公钥和其他信息进行加密,生成一个信息摘要,然后让有公信力的认证中心(简称 CA )用它的私钥对消息摘要加密,形成签名。最后将原始的信息和签名合在一起,称为数字证书。当接收方收到数字证书的时候,先根据原始信息使用同样的 Hash 算法生成一个摘要,然后使用公证处的公钥来对数字证书中的摘要进行解密,最后将解密的摘要和生成的摘要进行对比,就能发现得到的信息是否被更改了。
这个方法最要的是认证中心的可靠性,一般浏览器里会内置一些顶层的认证中心的证书,相当于我们自动信任了他们,只有这样才能保证数据的安全。
HTTPS的通信过程如下:
HTTPS的优点如下:
HTTPS的缺点如下:
先理解两个概念:
⾮对称加密虽然安全性更⾼,但是带来的问题就是速度很慢,影响性能。
解决⽅案:
结合两种加密⽅式,将对称加密的密钥使⽤⾮对称加密的公钥进⾏加密,然后发送出去,接收⽅使⽤私钥进⾏解密得到对称加密的密钥,然后双⽅可以使⽤对称加密来进⾏沟通。
此时⼜带来⼀个问题,中间⼈问题: 如果此时在客户端和服务器之间存在⼀个中间⼈,这个中间⼈只需要把原本双⽅通信互发的公钥,换成⾃⼰的公钥,这样中间⼈就可以轻松解密通信双⽅所发送的所有数据。
所以这个时候需要⼀个安全的第三⽅颁发证书(CA),证明身份的身份,防⽌被中间⼈攻击。 证书中包括:签发者、证书⽤途、使⽤者公钥、使⽤者私钥、使⽤者的HASH算法、证书到期时间等。
但是问题来了,如果中间⼈篡改了证书,那么身份证明是不是就⽆效了?这个证明就⽩买了,这个时候需要⼀个新的技术,数字签名。
数字签名就是⽤CA⾃带的HASH算法对证书的内容进⾏HASH得到⼀个摘要,再⽤CA的私钥加密,最终组成数字签名。当别⼈把他的证书发过来的时候,我再⽤同样的Hash算法,再次⽣成消息摘要,然后⽤CA的公钥对数字签名解密,得到CA创建的消息摘要,两者⼀⽐,就知道中间有没有被⼈篡改了。这个时候就能最⼤程度保证通信的安全了。
状态码的类别:
类别 | 原因 | 描述 |
---|---|---|
1xx | Informational(信息性状态码) | 接受的请求正在处理 |
2xx | Success(成功状态码) | 请求正常处理完毕 |
3xx | Redirection(重定向状态码) | 需要进行附加操作一完成请求 |
4xx | Client Error (客户端错误状态码) | 服务器无法处理请求 |
5xx | Server Error(服务器错误状态码) | 服务器处理请求出错 |
状态码2XX表示请求被正常处理了。
(1)200 OK
200 OK表示客户端发来的请求被服务器端正常处理了。
(2)204 No Content
该状态码表示客户端发送的请求已经在服务器端正常处理了,但是没有返回的内容,响应报文中不包含实体的主体部分。一般在只需要从客户端往服务器端发送信息,而服务器端不需要往客户端发送内容时使用。
(3)206 Partial Content
该状态码表示客户端进行了范围请求,而服务器端执行了这部分的 GET 请求。响应报文中包含由 Content-Range 指定范围的实体内容。
3XX 响应结果表明浏览器需要执行某些特殊的处理以正确处理请求。
(1)301 Moved Permanently
永久重定向。 该状态码表示请求的资源已经被分配了新的 URI,以后应使用资源指定的 URI。新的 URI 会在 HTTP 响应头中的 Location 首部字段指定。若用户已经把原来的URI保存为书签,此时会按照 Location 中新的URI重新保存该书签。同时,搜索引擎在抓取新内容的同时也将旧的网址替换为重定向之后的网址。
使用场景:
(2)302 Found
临时重定向。 该状态码表示请求的资源被分配到了新的 URI,希望用户(本次)能使用新的 URI 访问资源。和 301 Moved Permanently 状态码相似,但是 302 代表的资源不是被永久重定向,只是临时性质的。也就是说已移动的资源对应的 URI 将来还有可能发生改变。若用户把 URI 保存成书签,但不会像 301 状态码出现时那样去更新书签,而是仍旧保留返回 302 状态码的页面对应的 URI。同时,搜索引擎会抓取新的内容而保留旧的网址。因为服务器返回302代码,搜索引擎认为新的网址只是暂时的。
使用场景:
(3)303 See Other
该状态码表示由于请求对应的资源存在着另一个 URI,应使用 GET 方法定向获取请求的资源。 303 状态码和 302 Found 状态码有着相似的功能,但是 303 状态码明确表示客户端应当采用 GET 方法获取资源。
303 状态码通常作为 PUT 或 POST 操作的返回结果,它表示重定向链接指向的不是新上传的资源,而是另外一个页面,比如消息确认页面或上传进度页面。而请求重定向页面的方法要总是使用 GET。
注意:
(4)304 Not Modified
浏览器缓存相关。 该状态码表示客户端发送附带条件的请求时,服务器端允许请求访问资源,但未满足条件的情况。304 状态码返回时,不包含任何响应的主体部分。304 虽然被划分在 3XX 类别中,但是和重定向没有关系。
带条件的请求(Http 条件请求):使用 Get方法 请求,请求报文中包含(if-match
、if-none-match
、if-modified-since
、if-unmodified-since
、if-range
)中任意首部。
状态码304并不是一种错误,而是告诉客户端有缓存,直接使用缓存中的数据。返回页面的只有头部信息,是没有内容部分的,这样在一定程度上提高了网页的性能。
(5)307 Temporary Redirect
307表示临时重定向。 该状态码与 302 Found 有着相同含义,尽管 302 标准禁止 POST 变成 GET,但是实际使用时还是这样做了。
307 会遵守浏览器标准,不会从 POST 变成 GET。但是对于处理请求的行为时,不同浏览器还是会出现不同的情况。规范要求浏览器继续向 Location 的地址 POST 内容。规范要求浏览器继续向 Location 的地址 POST 内容。
4XX 的响应结果表明客户端是发生错误的原因所在。
(1)400 Bad Request
该状态码表示请求报文中存在语法错误。当错误发生时,需修改请求的内容后再次发送请求。另外,浏览器会像 200 OK 一样对待该状态码。
(2)401 Unauthorized
该状态码表示发送的请求需要有通过 HTTP 认证(BASIC 认证、DIGEST 认证)的认证信息。若之前已进行过一次请求,则表示用户认证失败
返回含有 401 的响应必须包含一个适用于被请求资源的 WWW-Authenticate 首部用以质询(challenge)用户信息。当浏览器初次接收到 401 响应,会弹出认证用的对话窗口。
以下情况会出现401:
(3)403 Forbidden
该状态码表明请求资源的访问被服务器拒绝了,服务器端没有必要给出详细理由,但是可以在响应报文实体的主体中进行说明。进入该状态后,不能再继续进行验证。该访问是永久禁止的,并且与应用逻辑密切相关。
IIS 定义了许多不同的 403 错误,它们指明更为具体的错误原因:
(4)404 Not Found
该状态码表明服务器上无法找到请求的资源。除此之外,也可以在服务器端拒绝请求且不想说明理由时使用。 以下情况会出现404:
(5)405 Method Not Allowed
该状态码表示客户端请求的方法虽然能被服务器识别,但是服务器禁止使用该方法。GET 和 HEAD 方法,服务器应该总是允许客户端进行访问。客户端可以通过 OPTIONS 方法(预检)来查看服务器允许的访问方法, 如下
Access-Control-Allow-Methods: GET,HEAD,PUT,PATCH,POST,DELETE
复制代码
5XX 的响应结果表明服务器本身发生错误.
(1)500 Internal Server Error
该状态码表明服务器端在执行请求时发生了错误。也有可能是 Web 应用存在的 bug 或某些临时的故障。
(2)502 Bad Gateway
该状态码表明扮演网关或代理角色的服务器,从上游服务器中接收到的响应是无效的。注意,502 错误通常不是客户端能够修复的,而是需要由途经的 Web 服务器或者代理服务器对其进行修复。以下情况会出现502:
(3)503 Service Unavailable
该状态码表明服务器暂时处于超负载或正在进行停机维护,现在无法处理请求。如果事先得知解除以上状况需要的时间,最好写入 RetryAfter 首部字段再返回给客户端。
使用场景:
(4)504 Gateway Timeout
该状态码表示网关或者代理的服务器无法在规定的时间内获得想要的响应。他是HTTP 1.1中新加入的。
使用场景:代码执行时间超时,或者发生了死循环。
(1)2XX 成功
(2)3XX 重定向
(3)4XX 客户端错误
(4)5XX 服务器错误
302是http1.0的协议状态码,在http1.1版本的时候为了细化302状态码⼜出来了两个303和307。 303明确表示客户端应当采⽤get⽅法获取资源,他会把POST请求变为GET请求进⾏重定向。 307会遵照浏览器标准,不会从post变为get。
概念: DNS 是域名系统 (Domain Name System) 的缩写,提供的是一种主机名到 IP 地址的转换服务,就是我们常说的域名系统。它是一个由分层的 DNS 服务器组成的分布式数据库,是定义了主机如何查询这个分布式数据库的方式的应用层协议。能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。
作用: 将域名解析为IP地址,客户端向DNS服务器(DNS服务器有自己的IP地址)发送域名查询请求,DNS服务器告知客户机Web服务器的 IP 地址。
DNS占用53号端口,同时使用TCP和UDP协议。 (1)在区域传输的时候使用TCP协议
(2)在域名解析的时候使用UDP协议
DNS服务器解析域名的过程:
比如要查询 www.baidu.com 的 IP 地址,首先会在浏览器的缓存中查找是否有该域名的缓存,如果不存在就将请求发送到本地的 DNS 服务器中,本地DNS服务器会判断是否存在该域名的缓存,如果不存在,则向根域名服务器发送一个请求,根域名服务器返回负责 .com 的顶级域名服务器的 IP 地址的列表。然后本地 DNS 服务器再向其中一个负责 .com 的顶级域名服务器发送一个请求,负责 .com 的顶级域名服务器返回负责 .baidu 的权威域名服务器的 IP 地址列表。然后本地 DNS 服务器再向其中一个权威域名服务器发送一个请求,最后权威域名服务器返回一个对应的主机名的 IP 地址列表。
实际上,DNS解析是一个包含迭代查询和递归查询的过程。
一般我们向本地 DNS 服务器发送请求的方式就是递归查询,因为我们只需要发出一次请求,然后本地 DNS 服务器返回给我 们最终的请求结果。而本地 DNS 服务器向其他域名服务器请求的过程是迭代查询的过程,因为每一次域名服务器只返回单次 查询的结果,下一级的查询由本地 DNS 服务器自己进行。
DNS 服务器中以资源记录的形式存储信息,每一个 DNS 响应报文一般包含多条资源记录。一条资源记录的具体的格式为
(Name,Value,Type,TTL)
复制代码
其中 TTL 是资源记录的生存时间,它定义了资源记录能够被其他的 DNS 服务器缓存多长时间。
常用的一共有四种 Type 的值,分别是 A、NS、CNAME 和 MX ,不同 Type 的值,对应资源记录代表的意义不同:
ISO
为了更好的使网络应用更为普及,推出了OSI
参考模型。
(1)应用层
OSI
参考模型中最靠近用户的一层,是为计算机用户提供应用接口,也为用户直接提供各种网络服务。我们常见应用层的网络服务协议有:HTTP
,HTTPS
,FTP
,POP3
、SMTP
等。
http(hyper text transfer protocol)(超文本传输协议)
或者https
.在后端设计数据接口时,我们常常使用到这个协议。FTP
是文件传输协议,在开发过程中,个人并没有涉及到,但是我想,在一些资源网站,比如百度网盘``迅雷
应该是基于此协议的。SMTP
是simple mail transfer protocol(简单邮件传输协议)
。在一个项目中,在用户邮箱验证码登录的功能时,使用到了这个协议。(2)表示层
表示层提供各种用于应用层数据的编码和转换功能,确保一个系统的应用层发送的数据能被另一个系统的应用层识别。如果必要,该层可提供一种标准表示形式,用于将计算机内部的多种数据格式转换成通信中采用的标准表示形式。数据压缩和加密也是表示层可提供的转换功能之一。
在项目开发中,为了方便数据传输,可以使用base64
对数据进行编解码。如果按功能来划分,base64
应该是工作在表示层。
(3)会话层
会话层就是负责建立、管理和终止表示层实体之间的通信会话。该层的通信由不同设备中的应用程序之间的服务请求和响应组成。
(4)传输层
传输层建立了主机端到端的链接,传输层的作用是为上层协议提供端到端的可靠和透明的数据传输服务,包括处理差错控制和流量控制等问题。该层向高层屏蔽了下层数据通信的细节,使高层用户看到的只是在两个传输实体间的一条主机到主机的、可由用户控制和设定的、可靠的数据通路。我们通常说的,TCP
UDP
就是在这一层。端口号既是这里的“端”。
(5)网络层
本层通过IP
寻址来建立两个节点之间的连接,为源端的运输层送来的分组,选择合适的路由和交换节点,正确无误地按照地址传送给目的端的运输层。就是通常说的IP
层。这一层就是我们经常说的IP
协议层。IP
协议是Internet
的基础。我们可以这样理解,网络层规定了数据包的传输路线,而传输层则规定了数据包的传输方式。
(6)数据链路层
将比特组合成字节,再将字节组合成帧,使用链路层地址 (以太网使用MAC地址)来访问介质,并进行差错检测。 网络层与数据链路层的对比,通过上面的描述,我们或许可以这样理解,网络层是规划了数据包的传输路线,而数据链路层就是传输路线。不过,在数据链路层上还增加了差错控制的功能。
(7)物理层
实际最终信号的传输是通过物理层实现的。通过物理介质传输比特流。规定了电平、速度和电缆针脚。常用设备有(各种物理设备)集线器、中继器、调制解调器、网线、双绞线、同轴电缆。这些都是物理层的传输介质。
OSI七层模型通信特点:对等通信 对等通信,为了使数据分组从源传送到目的地,源端OSI模型的每一层都必须与目的端的对等层进行通信,这种通信方式称为对等层通信。在每一层通信过程中,使用本层自己协议进行通信。
TCP/IP
五层协议和OSI
的七层协议对应关系如下:
从上图中可以看出,TCP/IP
模型比OSI
模型更加简洁,它把应用层/表示层/会话层
全部整合为了应用层
。
在每一层都工作着不同的设备,比如我们常用的交换机就工作在数据链路层的,一般的路由器是工作在网络层的。 在每一层实现的协议也各不同,即每一层的服务也不同,下图列出了每层主要的传输协议:
同样,TCP/IP
五层协议的通信方式也是对等通信:
TCP 和 UDP都是传输层协议,他们都属于TCP/IP协议族:
(1)UDP
UDP的全称是用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议。在OSI模型中,在传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就是说,当报文发送之后,是无法得知其是否安全完整到达的。
它的特点如下:
1)面向无连接
首先 UDP 是不需要和 TCP一样在发送数据前进行三次握手建立连接的,想发数据就可以开始发送了。并且也只是数据报文的搬运工,不会对数据报文进行任何拆分和拼接操作。
具体来说就是:
2)有单播,多播,广播的功能
UDP 不止支持一对一的传输方式,同样支持一对多,多对多,多对一的方式,也就是说 UDP 提供了单播,多播,广播的功能。
3)面向报文
发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付IP层。UDP对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。因此,应用程序必须选择合适大小的报文
4)不可靠性
首先不可靠性体现在无连接上,通信都不需要建立连接,想发就发,这样的情况肯定不可靠。
并且收到什么数据就传递什么数据,并且也不会备份数据,发送数据也不会关心对方是否已经正确接收到数据了。
再者网络环境时好时坏,但是 UDP 因为没有拥塞控制,一直会以恒定的速度发送数据。即使网络条件不好,也不会对发送速率进行调整。这样实现的弊端就是在网络条件不好的情况下可能会导致丢包,但是优点也很明显,在某些实时性要求高的场景(比如电话会议)就需要使用 UDP 而不是 TCP。
5)头部开销小,传输数据报文时是很高效的。
UDP 头部包含了以下几个数据:
因此 UDP 的头部开销小,只有8字节,相比 TCP 的至少20字节要少得多,在传输数据报文时是很高效的。
(2)TCP TCP的全称是传输控制协议是一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP 是面向连接的、可靠的流协议(流就是指不间断的数据结构)。
它有以下几个特点:
1)面向连接
面向连接,是指发送数据之前必须在两端建立连接。建立连接的方法是“三次握手”,这样能建立可靠的连接。建立连接,是为数据的可靠传输打下了基础。
2)仅支持单播传输
每条TCP传输连接只能有两个端点,只能进行点对点的数据传输,不支持多播和广播传输方式。
3)面向字节流
TCP不像UDP一样那样一个个报文独立地传输,而是在不保留报文边界的情况下以字节流方式进行传输。
4)可靠传输
对于可靠传输,判断丢包、误码靠的是TCP的段编号以及确认号。TCP为了保证报文传输的可靠,就给每个包一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ACK);如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据(假设丢失了)将会被重传。
5)提供拥塞控制
当网络出现拥塞的时候,TCP能够减小向网络注入数据的速率和数量,缓解拥塞。
6)提供全双工通信
TCP允许通信双方的应用程序在任何时候都能发送数据,因为TCP连接的两端都设有缓存,用来临时存放双向通信的数据。当然,TCP可以立即发送一个数据段,也可以缓存一段时间以便一次发送更多的数据段(最大的数据段大小取决于MSS)
UDP | TCP | |
---|---|---|
是否连接 | 无连接 | 面向连接 |
是否可靠 | 不可靠传输,不使用流量控制和拥塞控制 | 可靠传输(数据顺序和正确性),使用流量控制和拥塞控制 |
连接对象个数 | 支持一对一,一对多,多对一和多对多交互通信 | 只能是一对一通信 |
传输方式 | 面向报文 | 面向字节流 |
首部开销 | 首部开销小,仅8字节 | 首部最小20字节,最大60字节 |
适用场景 | 适用于实时应用,例如视频会议、直播 | 适用于要求可靠传输的应用,例如文件传输 |
UDP在传输数据之前不需要先建立连接,远地主机的运输层在接收到UDP报文后,不需要确认,提供不可靠交付。总结就以下四点:
由于TCP的下层网络(网络层)可能出现丢失、重复或失序的情况,TCP协议提供可靠数据传输服务。为保证数据传输的正确性,TCP会重传其认为已丢失(包括报文中的比特错误)的包。TCP使用两套独立的机制来完成重传,一是基于时间,二是基于确认信息。
TCP在发送一个数据之后,就开启一个定时器,若是在这个时间内没有收到发送数据的ACK确认报文,则对该报文进行重传,在达到一定次数还没有成功时放弃并发送一个复位信号。
TCP的拥塞控制机制主要是以下四种机制:
(1)慢启动(慢开始)
(2)拥塞避免
(3)快速重传
(4)快速恢复
一般来说,流量控制就是为了让发送方发送数据的速度不要太快,要让接收方来得及接收。TCP采用大小可变的滑动窗口进行流量控制,窗口大小的单位是字节。这里说的窗口大小其实就是每次传输的数据大小。
TCP 的可靠传输机制是基于连续 ARQ 协议和滑动窗口协议的。
TCP 协议在发送方维持了一个发送窗口,发送窗口以前的报文段是已经发送并确认了的报文段,发送窗口中包含了已经发送但 未确认的报文段和允许发送但还未发送的报文段,发送窗口以后的报文段是缓存中还不允许发送的报文段。当发送方向接收方发 送报文时,会依次发送窗口内的所有报文段,并且设置一个定时器,这个定时器可以理解为是最早发送但未收到确认的报文段。 如果在定时器的时间内收到某一个报文段的确认回答,则滑动窗口,将窗口的首部向后滑动到确认报文段的后一个位置,此时如 果还有已发送但没有确认的报文段,则重新设置定时器,如果没有了则关闭定时器。如果定时器超时,则重新发送所有已经发送 但还未收到确认的报文段,并将超时的间隔设置为以前的两倍。当发送方收到接收方的三个冗余的确认应答后,这是一种指示, 说明该报文段以后的报文段很有可能发生丢失了,那么发送方会启用快速重传的机制,就是当前定时器结束前,发送所有的已发 送但确认的报文段。
接收方使用的是累计确认的机制,对于所有按序到达的报文段,接收方返回一个报文段的肯定回答。如果收到了一个乱序的报文 段,那么接方会直接丢弃,并返回一个最近的按序到达的报文段的肯定回答。使用累计确认保证了返回的确认号之前的报文段都 已经按序到达了,所以发送窗口可以移动到已确认报文段的后面。
发送窗口的大小是变化的,它是由接收窗口剩余大小和网络中拥塞程度来决定的,TCP 就是通过控制发送窗口的长度来控制报文 段的发送速率。
但是 TCP 协议并不完全和滑动窗口协议相同,因为许多的 TCP 实现会将失序的报文段给缓存起来,并且发生重传时,只会重 传一个报文段,因此 TCP 协议的可靠传输机制更像是窗口滑动协议和选择重传协议的一个混合体。
(1)三次握手
三次握手(Three-way Handshake)其实就是指建立一个TCP连接时,需要客户端和服务器总共发送3个包。进行三次握手的主要作用就是为了确认双方的接收能力和发送能力是否正常、指定自己的初始化序列号为后面的可靠性传送做准备。实质上其实就是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号,交换TCP窗口大小信息。
刚开始客户端处于 Closed 的状态,服务端处于 Listen 状态。
首部的同步位SYN=1,初始序号seq=x,SYN=1的报文段不能携带数据,但要消耗掉一个序号。
在确认报文段中SYN=1,ACK=1,确认号ack=x+1,初始序号seq=y
确认报文段ACK=1,确认号ack=y+1,序号seq=x+1(初始为seq=x,第二个报文段所以要+1),ACK报文段可以携带数据,不携带数据则不消耗序号。
那为什么要三次握手呢?两次不行吗?
如客户端发出连接请求,但因连接请求报文丢失而未收到确认,于是客户端再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接,客户端共发出了两个连接请求报文段,其中第一个丢失,第二个到达了服务端,但是第一个丢失的报文段只是在某些网络结点长时间滞留了,延误到连接释放以后的某个时间才到达服务端,此时服务端误认为客户端又发出一次新的连接请求,于是就向客户端发出确认报文段,同意建立连接,不采用三次握手,只要服务端发出确认,就建立新的连接了,此时客户端忽略服务端发来的确认,也不发送数据,则服务端一致等待客户端发送数据,浪费资源。
简单来说就是以下三步:
TCP 三次握手的建立连接的过程就是相互确认初始序号的过程,告诉对方,什么样序号的报文段能够被正确接收。 第三次握手的作用是客户端对服务器端的初始序号的确认。如果只使用两次握手,那么服务器就没有办法知道自己的序号是否 已被确认。同时这样也是为了防止失效的请求报文段被服务器接收,而出现错误的情况。
(2)四次挥手
刚开始双方都处于 ESTABLISHED 状态,假如是客户端先发起关闭请求。四次挥手的过程如下:
即发出连接释放报文段(FIN=1,序号seq=u),并停止再发送数据,主动关闭TCP连接,进入FIN_WAIT1(终止等待1)状态,等待服务端的确认。
即服务端收到连接释放报文段后即发出确认报文段(ACK=1,确认号ack=u+1,序号seq=v),服务端进入CLOSE_WAIT(关闭等待)状态,此时的TCP处于半关闭状态,客户端到服务端的连接释放。客户端收到服务端的确认后,进入FIN_WAIT2(终止等待2)状态,等待服务端发出的连接释放报文段。
即服务端没有要向客户端发出的数据,服务端发出连接释放报文段(FIN=1,ACK=1,序号seq=w,确认号ack=u+1),服务端进入LAST_ACK(最后确认)状态,等待客户端的确认。
即客户端收到服务端的连接释放报文段后,对此发出确认报文段(ACK=1,seq=u+1,ack=w+1),客户端进入TIME_WAIT(时间等待)状态。此时TCP未释放掉,需要经过时间等待计时器设置的时间2MSL后,客户端才进入CLOSED状态。
那为什么需要四次挥手呢?
因为当服务端收到客户端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当服务端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉客户端,“你发的FIN报文我收到了”。只有等到我服务端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送,故需要四次挥手。
简单来说就是以下四步:
TCP 使用四次挥手的原因是因为 TCP 的连接是全双工的,所以需要双方分别释放到对方的连接,单独一方的连接释放,只代 表不能再向对方发送数据,连接处于的是半释放的状态。
最后一次挥手中,客户端会等待一段时间再关闭的原因,是为了防止发送给服务器的确认报文段丢失或者出错,从而导致服务器 端不能正常关闭。
默认情况下, TCP 连接会启⽤延迟传送算法 (Nagle 算法), 在数据发送之前缓存他们. 如果短时间有多个数据发送, 会缓冲到⼀起作⼀次发送 (缓冲⼤⼩⻅ socket.bufferSize ), 这样可以减少 IO 消耗提⾼性能.
如果是传输⽂件的话, 那么根本不⽤处理粘包的问题, 来⼀个包拼⼀个包就好了。但是如果是多条消息, 或者是别的⽤途的数据那么就需要处理粘包.
下面看⼀个例⼦, 连续调⽤两次 send 分别发送两段数据 data1 和 data2, 在接收端有以下⼏种常⻅的情况: A. 先接收到 data1, 然后接收到 data2 . B. 先接收到 data1 的部分数据, 然后接收到 data1 余下的部分以及 data2 的全部. C. 先接收到了 data1 的全部数据和 data2 的部分数据, 然后接收到了 data2 的余下的数据. D. ⼀次性接收到了 data1 和 data2 的全部数据.
其中的 BCD 就是我们常⻅的粘包的情况. ⽽对于处理粘包的问题, 常⻅的解决⽅案有:
WebSocket是HTML5提供的一种浏览器与服务器进行全双工通讯的网络技术,属于应用层协议。它基于TCP传输协议,并复用HTTP的握手通道。浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性的连接, 并进行双向数据传输。
WebSocket 的出现就解决了半双工通信的弊端。它最大的特点是:服务器可以向客户端主动推动消息,客户端也可以主动向服务器推送消息。
WebSocket原理:客户端向 WebSocket 服务器通知(notify)一个带有所有接收者ID(recipients IDs)的事件(event),服务器接收后立即通知所有活跃的(active)客户端,只有ID在接收者ID序列中的客户端才会处理这个事件。
WebSocket 特点的如下:
Websocket的使用方法如下:
在客户端中:
// 在index.html中直接写WebSocket,设置服务端的端口号为 9999
let ws = new WebSocket('ws://localhost:9999');
// 在客户端与服务端建立连接后触发
ws.onopen = function() {
console.log("Connection open.");
ws.send('hello');
};
// 在服务端给客户端发来消息的时候触发
ws.onmessage = function(res) {
console.log(res); // 打印的是MessageEvent对象
console.log(res.data); // 打印的是收到的消息
};
// 在客户端与服务端建立关闭后触发
ws.onclose = function(evt) {
console.log("Connection closed.");
};
复制代码
短轮询和长轮询的目的都是用于实现客户端和服务器端的一个即时通讯。
短轮询的基本思路: 浏览器每隔一段时间向浏览器发送 http 请求,服务器端在收到请求后,不论是否有数据更新,都直接进行响应。这种方式实现的即时通信,本质上还是浏览器发送请求,服务器接受请求的一个过程,通过让客户端不断的进行请求,使得客户端能够模拟实时地收到服务器端的数据的变化。这种方式的优点是比较简单,易于理解。缺点是这种方式由于需要不断的建立 http 连接,严重浪费了服务器端和客户端的资源。当用户增加时,服务器端的压力就会变大,这是很不合理的。
长轮询的基本思路: 首先由客户端向服务器发起请求,当服务器收到客户端发来的请求后,服务器端不会直接进行响应,而是先将这个请求挂起,然后判断服务器端数据是否有更新。如果有更新,则进行响应,如果一直没有数据,则到达一定的时间限制才返回。客户端 JavaScript 响应处理函数会在处理完服务器返回的信息后,再次发出请求,重新建立连接。长轮询和短轮询比起来,它的优点是明显减少了很多不必要的 http 请求次数,相比之下节约了资源。长轮询的缺点在于,连接挂起也会导致资源的浪费。
SSE 的基本思想: 服务器使用流信息向服务器推送信息。严格地说,http 协议无法做到服务器主动推送信息。但是,有一种变通方法,就是服务器向客户端声明,接下来要发送的是流信息。也就是说,发送的不是一次性的数据包,而是一个数据流,会连续不断地发送过来。这时,客户端不会关闭连接,会一直等着服务器发过来的新的数据流,视频播放就是这样的例子。SSE 就是利用这种机制,使用流信息向浏览器推送信息。它基于 http 协议,目前除了 IE/Edge,其他浏览器都支持。它相对于前面两种方式来说,不需要建立过多的 http 请求,相比之下节约了资源。
WebSocket 是 HTML5 定义的一个新协议议,与传统的 http 协议不同,该协议允许由服务器主动的向客户端推送信息。使用 WebSocket 协议的缺点是在服务器端的配置比较复杂。WebSocket 是一个全双工的协议,也就是通信双方是平等的,可以相互发送消息,而 SSE 的方式是单向通信的,只能由服务器端向客户端推送信息,如果客户端需要发送信息就是属于下一个 http 请求了。
上面的四个通信协议,前三个都是基于HTTP协议的。
对于这四种即使通信协议,从性能的角度来看: WebSocket > 长连接(SEE) > 长轮询 > 短轮询 但是,我们如果考虑浏览器的兼容性问题,顺序就恰恰相反了: 短轮询 > 长轮询 > 长连接(SEE) > WebSocket 所以,还是要根据具体的使用场景来判断使用哪种方式。
src和href都是用来引用外部的资源,它们的区别如下:
语义化是指根据内容的结构化(内容语义化),选择合适的标签(代码语义化)。通俗来讲就是用正确的标签做正确的事情。
语义化的优点如下:
常见的语义化标签:
<header></header> 头部
<nav></nav> 导航栏
<section></section> 区块(有语义化的div)
<main></main> 主要区域
<article></article> 主要内容
<aside></aside> 侧边栏
<footer></footer> 底部
复制代码
DOCTYPE是HTML5中一种标准通用标记语言的文档类型声明,它的目的是告诉浏览器(解析器)应该以什么样(html或xhtml)的文档类型定义来解析文档,不同的渲染模式会影响浏览器对 CSS 代码甚⾄ JavaScript 脚本的解析。它必须声明在HTML⽂档的第⼀⾏。
浏览器渲染页面的两种模式(可通过document.compatMode获取,比如,语雀官网的文档类型是CSS1Compat):
如果没有defer或async属性,浏览器会立即加载并执行相应的脚本。它不会等待后续加载的文档元素,读取到就会开始加载和执行,这样就阻塞了后续文档的加载。
下图可以直观的看出三者之间的区别: 其中蓝色代表js脚本网络加载时间,红色代表js脚本执行时间,绿色代表html解析。
defer 和 async属性都是去异步加载外部的JS脚本文件,它们都不会阻塞页面的解析,其区别如下:
meta
标签由 name
和 content
属性定义,用来描述网页文档的属性,比如网页的作者,网页描述,关键词等,除了HTTP标准固定了一些name
作为大家使用的共识,开发者还可以自定义name。
常用的meta标签: (1)charset
,用来描述HTML文档的编码类型:
<meta charset="UTF-8" >
复制代码
(2) keywords
,页面关键词:
<meta name="keywords" content="关键词" />
复制代码
(3)description
,页面描述:
<meta name="description" content="页面描述内容" />
复制代码
(4)refresh
,页面重定向和刷新:
<meta http-equiv="refresh" content="0;url=" />
复制代码
(5)viewport
,适配移动端,可以控制视口的大小和比例:
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
复制代码
其中,content
参数有以下几种:
width viewport
:宽度(数值/device-width)height viewport
:高度(数值/device-height)initial-scale
:初始缩放比例maximum-scale
:最大缩放比例minimum-scale
:最小缩放比例user-scalable
:是否允许用户缩放(yes/no)(6)搜索引擎索引方式:
<meta name="robots" content="index,follow" />
复制代码
其中,content
参数有以下几种:
all
:文件将被检索,且页面上的链接可以被查询;none
:文件将不被检索,且页面上的链接不可以被查询;index
:文件将被检索;follow
:页面上的链接可以被查询;noindex
:文件将不被检索;nofollow
:页面上的链接不可以被查询。1. 语义化标签
2. 媒体标签
(1) audio:音频
<audio src='' controls autoplay loop='true'></audio>
复制代码
属性:
(2)video视频
<video src='' poster='imgs/aa.jpg' controls></video>
复制代码
属性:
(3)source标签 因为浏览器对视频格式支持程度不一样,为了能够兼容不同的浏览器,可以通过source来指定视频源。
<video>
<source src='aa.flv' type='video/flv'></source>
<source src='aa.mp4' type='video/mp4'></source>
</video>
复制代码
3. 表单
表单类型:
表单属性:
表单事件:
4. 进度条、度量器
设置规则:min < low < high < max
5.DOM查询操作
它们选择的对象可以是标签,可以是类(需要加点),可以是ID(需要加#)
6. Web存储
HTML5 提供了两种在客户端存储数据的新方法:
7. 其他
<img draggable="true" />
复制代码
<canvas id="myCanvas" width="200" height="100"></canvas>
复制代码
总结: (1)新增语义化标签:nav、header、footer、aside、section、article (2)音频、视频标签:audio、video (3)数据存储:localStorage、sessionStorage (4)canvas(画布)、Geolocation(地理定位)、websocket(通信协议) (5)input标签新增属性:placeholder、autocomplete、autofocus、required (6)history API:go、forward、back、pushstate
移除的元素有:
响应式页面中经常用到根据屏幕密度设置不同的图片。这时就用到了 img 标签的srcset属性。srcset属性用于设置不同屏幕密度下,img 会自动加载不同的图片。用法如下:
<img src="image-128.png" srcset="image-256.png 2x" />
复制代码
使用上面的代码,就能实现在屏幕密度为1x的情况下加载image-128.png, 屏幕密度为2x时加载image-256.png。
按照上面的实现,不同的屏幕密度都要设置图片地址,目前的屏幕密度有1x,2x,3x,4x四种,如果每一个图片都设置4张图片,加载就会很慢。所以就有了新的srcset标准。代码如下:
<img src="image-128.png"
srcset="image-128.png 128w, image-256.png 256w, image-512.png 512w"
sizes="(max-width: 360px) 340px, 128px" />
复制代码
其中srcset指定图片的地址和对应的图片质量。sizes用来设置图片的尺寸零界点。对于 srcset 中的 w 单位,可以理解成图片质量。如果可视区域小于这个质量的值,就可以使用。浏览器会自动选择一个最小的可用图片。
sizes语法如下:
sizes="[media query] [length], [media query] [length] ... "
复制代码
sizes就是指默认显示128px, 如果视区宽度大于360px, 则显示340px。
a b span img input select strong
;div ul ol li dl dt dd h1 h2 h3 h4 h5 h6 p
;空元素,即没有内容的HTML元素。空元素是在开始标签中关闭的,也就是空元素没有闭合标签:
<br>
、<hr>
、<img>
、<input>
、<link>
、<meta>
;<area>
、<base>
、<col>
、<colgroup>
、<command>
、<embed>
、<keygen>
、<param>
、<source>
、<track>
、<wbr>
。在 HTML 页面中,如果在执行脚本时,页面的状态是不可相应的,直到脚本执行完成后,页面才变成可相应。web worker 是运行在后台的 js,独立于其他脚本,不会影响页面的性能。 并且通过 postMessage 将结果回传到主线程。这样在进行复杂操作的时候,就不会阻塞主线程了。
如何创建 web worker:
离线存储指的是:在用户没有与因特网连接时,可以正常访问站点或应用,在用户与因特网连接时,更新用户机器上的缓存文件。
**原理:**HTML5的离线存储是基于一个新建的 .appcache
文件的缓存机制(不是存储技术),通过这个文件上的解析清单离线存储资源,这些资源就会像cookie一样被存储了下来。之后当网络在处于离线状态下时,浏览器会通过被离线存储的数据进行页面展示
使用方法: (1)创建一个和 html 同名的 manifest 文件,然后在页面头部加入 manifest 属性:
<html lang="en" manifest="index.manifest">
复制代码
(2)在 cache.manifest
文件中编写需要离线存储的资源:
CACHE MANIFEST
#v0.11
CACHE:
js/app.js
css/style.css
NETWORK:
resourse/logo.png
FALLBACK:
/ /offline.html
复制代码
(3)在离线状态时,操作 window.applicationCache
进行离线缓存的操作。
如何更新缓存:
(1)更新 manifest 文件
(2)通过 javascript 操作
(3)清除浏览器缓存
注意事项:
(1)浏览器对缓存数据的容量限制可能不太一样(某些浏览器设置的限制是每个站点 5MB)。
(2)如果 manifest 文件,或者内部列举的某一个文件不能正常下载,整个更新过程都将失败,浏览器继续全部使用老的缓存。
(3)引用 manifest 的 html 必须与 manifest 文件同源,在同一个域下。
(4)FALLBACK 中的资源必须和 manifest 文件同源。
(5)当一个资源被缓存后,该浏览器直接请求这个绝对路径也会访问缓存中的资源。
(6)站点中的其他页面即使没有设置 manifest 属性,请求的资源如果在缓存中也从缓存中访问。
(7)当 manifest 文件发生改变时,资源请求本身也会触发更新。
iframe 元素会创建包含另外一个文档的内联框架(即行内框架)。
优点:
缺点:
label标签来定义表单控件的关系:当用户选择label标签时,浏览器会自动将焦点转到和label标签相关的表单控件上。
<label for="mobile">Number:</label>
<input type="text" id="mobile"/>
复制代码
<label>Date:<input type="text"/></label>
复制代码
(1)SVG: SVG可缩放矢量图形(Scalable Vector Graphics)是基于可扩展标记语言XML描述的2D图形的语言,SVG基于XML就意味着SVG DOM中的每个元素都是可用的,可以为某个元素附加Javascript事件处理器。在 SVG 中,每个被绘制的图形均被视为对象。如果 SVG 对象的属性发生变化,那么浏览器能够自动重现图形。
其特点如下:
(2)Canvas: Canvas是画布,通过Javascript来绘制2D图形,是逐像素进行渲染的。其位置发生改变,就会重新进行绘制。
其特点如下:
注:矢量图,也称为面向对象的图像或绘图图像,在数学上定义为一系列由线连接的点。矢量文件中的图形元素称为对象。每个对象都是一个自成一体的实体,它具有颜色、形状、轮廓、大小和屏幕位置等属性。
标签用于定义文档的头部,它是所有头部元素的容器。 中的元素可以引用脚本、指示浏览器在哪里找到样式表、提供元信息等。
文档的头部描述了文档的各种属性和信息,包括文档的标题、在 Web 中的位置以及和其他文档的关系等。绝大多数文档头部包含的数据都不会真正作为内容显示给读者。
下面这些标签可用在 head 部分:<base>, <link>, <meta>, <script>, <style>, <title>
。
其中 <title>
定义文档的标题,它是 head 部分中唯一必需的元素。
<!Doctype html>
有何作用? 严格模式与混杂模式如何区分?它们有何意义?文档声明的作用: 文档声明是为了告诉浏览器,当前HTML
文档使用什么版本的HTML
来写的,这样浏览器才能按照声明的版本来正确的解析。
的作用:<!doctype html>
的作用就是让浏览器进入标准模式,使用最新的 HTML5
标准来解析渲染页面;如果不写,浏览器就会进入混杂模式,我们需要避免此类情况发生。
严格模式与混杂模式的区分:
W3C
标准解析代码;区分:网页中的DTD
,直接影响到使用的是严格模式还是浏览模式,可以说DTD
的使用与这两种方式的区别息息相关。
DOCTYPE
,那么它一般以严格模式呈现(严格 DTD ——严格模式);DTD
和 URI
的 DOCTYPE
,也以严格模式呈现,但有过渡 DTD
而没有 URI
(统一资源标识符,就是声明最后的地址)会导致页面以混杂模式呈现(有 URI 的过渡 DTD ——严格模式;没有 URI 的过渡 DTD ——混杂模式);DOCTYPE
不存在或形式不正确会导致文档以混杂模式呈现(DTD不存在或者格式不正确——混杂模式);HTML5
没有 DTD
,因此也就没有严格模式与混杂模式的区别,HTML5
有相对宽松的 法,实现时,已经尽可能大的实现了向后兼容(HTML5 没有严格和混杂之分)。总之,严格模式让各个浏览器统一执行一套规范兼容模式保证了旧网站的正常运行。
产生乱码的原因:
gbk
的编码,而内容中的中文字是utf-8
编码的,这样浏览器打开即会出现html
乱码,反之也会出现乱码;html
网页编码是gbk
,而程序从数据库中调出呈现是utf-8
编码的内容也会造成编码乱码;解决办法:
gbk
,而数据库储存数据编码格式是UTF-8
,此时需要程序查询数据库数据显示数据前进程序转码;(1)渐进增强(progressive enhancement):主要是针对低版本的浏览器进行页面重构,保证基本的功能情况下,再针对高级浏览器进行效果、交互等方面的改进和追加功能,以达到更好的用户体验。 (2)优雅降级 graceful degradation: 一开始就构建完整的功能,然后再针对低版本的浏览器进行兼容。
两者区别:
“优雅降级”观点认为应该针对那些最高级、最完善的浏览器来设计网站。而将那些被认为“过时”或有功能缺失的浏览器下的测试工作安排在开发周期的最后阶段,并把测试对象限定为主流浏览器(如 IE、Mozilla 等)的前一个版本。 在这种设计范例下,旧版的浏览器被认为仅能提供“简陋却无妨 (poor, but passable)” 的浏览体验。可以做一些小的调整来适应某个特定的浏览器。但由于它们并非我们所关注的焦点,因此除了修复较大的错误之外,其它的差异将被直接忽略。
“渐进增强”观点则认为应关注于内容本身。内容是建立网站的诱因,有的网站展示它,有的则收集它,有的寻求,有的操作,还有的网站甚至会包含以上的种种,但相同点是它们全都涉及到内容。这使得“渐进增强”成为一种更为合理的设计范例。这也是它立即被 Yahoo 所采纳并用以构建其“分级式浏览器支持 (Graded Browser Support)”策略的原因所在。
{ module: false }
和 sideEffects: false
Common.js 和 es6 module 区别
你写的脚手架其中有一个模板是针对销售快速迭代的情节,能介绍一下吗
npm run page=[文件夹名称] env=[环境] method=[dev|build]
图片编辑器做的性能优化
能介绍一下缓存策略吗
301、302、307、308的区别
开始做题,做了一题比较偏冷的题目,看概念我都要理解几分钟的。
技术征文图
虽然做出来,但是不是用数组实现,而是用链表,面试官问我如何再优化,我就是说改成跳表,空间换时间,但是其实正确答案是二分查找……
4 面
四面就比较轻松,问了一下项目就开始做题。
先从简单开始 112. 路径总和
技术征文图
做完后在此基础上,改变成
路径不需要从根节点开始,也不需要在叶子节点结束
虽然题目不难,我也做了减枝的处理,但是面试官说还能优化,如何减少重复计算。这就难倒我了,我知道需要用一个 map 来保存中间的结果,但是这个 map 的 key 如何设计一时想不出来。想了很久说没思路面试就结束了。
1 面
2 面
然后还问了一下别的东西,但是我不是很懂就不知清楚了,感觉这一轮面试好奇怪。前端基本没面,反而音视频处理问了很多。
3 面
4 面
这一面就是聊人生,扯得比较远。讲了一下产品一般盈利套路,如何拉新、留存、激活、转换和收益。以前在网易 CC 电竞做的事情。对中国电竞前景的看法。
1 面
由于是年前面的,所以在会议室面
技术征文图
然后有白板写了一下
做到上面,我就十分懵逼,我是不是面错岗位了。
技术征文图
然后是情景题,当场设计系统。
情景以下:
emm。。。。那我大概知道为何之前问我这么多数学问题
这个项目的难点有以下
面完情景题,就做算法题,题目也是很奇怪的。
第一题:洗牌算法,这个可以
第二题:假设有偶数位的整数,将整数分开两边,然后对每边的每个数组的每一位求总和,当两边的总和相对就认为这组数符合要求,求2n位数的符合要求数占总数的多少。。。。。有点晕
例子:287962 可以分成 287 962,其中 2 + 8 + 7 = 9 + 6 + 2,那么他就是符合要求的。
❝我想了很久还是想不出来。
❞
2 面
可能一面比较难,二面就比较随便:
3 面
聊得比较广,没啥重点
1 面
2 面
3 面
三面也是聊得很广,基本木有前端。
其实也没有太过特意去准备面试,其实都是靠平时积累的,在 2019 年开始我就制定了自己的学习计划了,并且每天都坚持学习。可参考 lien的每日学习
以下会分为:
顺序有优先度之分,之所以把计算机基础放在第一位,是因为经过这些面试发现计算机基础考察还有比前端还要多,甚至有些公司面试都不怎么问我前端了。
tip:里面涉及很多都是极客时间的课程,然而我并没有打广告。推荐是因为我看完后真心觉得讲的好,当然好是指容易让初学者了解和上手,深度还是去看专门的权威书做普通吧。
数据结构和算法
学习办法不是一开始就刷题,要先学点入门。
我刷的题目也不多,就 100 来道,和别人比起就差远了。
技术征文图
但是我做的题目范围比较广,而且都是自己总结高频再去做,命中的几率比较大。
基本数据结构
常见的算法
参考资料:
blog:
网络
网络是前端重要中的重要,也是面试高频的范围。很多人都是一开始就去看计算机网络、TCP/IP 协议、这些书入门,也不是说不好,但是对于新手入门门槛可能太高,还没看几页就放弃了。可以一开始看点视频跟着作者一起来抓包,慢慢熟悉。
观看顺序:
最后补充的书籍
tips:
对于前端来说,http,http2,https 的握手是高频题,要主要复习。
其他
本来想聊聊计算机组成原理、操作系统和编译原理,但是一个我学得不精,第二面试也没有怎么问,操作系统就问 linux 的一些简单指令和写一下 Jenkins 的脚本而已。或者后端对这方面会问得比较多。
前端基础-JS
以下必须要十分熟悉:
prototype
和 __proto__
参考资料:
先做一份自我检测,一名【合格】前端工程师的自检清单。然后根据自己薄弱点去看相关资料。
书籍:
入门
BLOG:
掘金好文章:
前端基础-浏览器
有以下比较经典的问题:
前端基础-css
前端框架-vue
前端工程化-webpack
优化
============================================
参考:
2020年年初前端面试题 - 掘金跳槽是早就计划好的,虽然因为疫情的原因耽搁了一个月,但实在是不想就这么混吃等死了,最终还是选择离职。前两周基本都是在试水的态度参加面试的,所以面得都不怎么样。在此,我必须真诚的给各位一个忠告,千万不要有这种心理,因为我的这种心理导致前期错过了一些还不错的公司T_T。 我面试的是…https://juejin.cn/post/6844904120202051598https://juejin.cn/post/6844904120202051598「2021」高频前端面试题汇总之JavaScript篇(上) - 掘金2021 高频前端面试题汇总之JavaScript篇,前端面试题汇总系列文章的JavaScript篇,长期更新,欢迎收藏、点赞!https://juejin.cn/post/6940945178899251230https://juejin.cn/post/6940945178899251230
「2021」高频前端面试题汇总之计算机网络篇 - 掘金2021 高频前端面试题汇总之计算机网络篇,前端面试题汇总系列文章的计算机网络篇,长期更新,欢迎收藏、点赞!https://juejin.cn/post/6908327746473033741https://juejin.cn/post/6908327746473033741「2021」高频前端面试题汇总之HTML篇 - 掘金2021 高频前端面试题汇总之HTML篇,前端面试题汇总系列文章的HTML篇,长期更新,欢迎收藏、点赞!https://juejin.cn/post/6905294475539513352https://juejin.cn/post/6905294475539513352