mixup是图片分类中的一个非常有效的trick, 具体流程如下图所示:
简单来讲就是将两张图片通过不同的比例进行融合,同时图片对应的one-hot编码也以相同的比例相乘,从而构造出新的数据集。 本质上,mixup在成对样本及其标签的凸组合(convex combinations)上训练神经网络,可以规范神经网络,增强训练样本之间的线性表达。 其优点是:
- 改善了网络模型的泛化能力
- 减少对错误标签的记忆
- 增加对抗样本的鲁棒性
- 稳定训练过程
mixup效果受α,β值影响,Beta分布如下图:
具体请参考文章:数据增强之mixup算法详解