发布时间:2024-05-30 16:01
AI给老照片上色,近来确实很火爆,但上的颜色真的准确吗?
有人便就此做了个实验,把20世纪初俄国的彩色照片去色后,再与AI上色的结果做对比。
如此对比结果之下,这位网友直接指出:
AI总是倾向于选择不鲜艳的颜色,让天空总是灰蒙蒙,人们的穿着都很朴素,地面充满灰尘和泥土。
但更进一步的,她所担心的还有另外一点——AI会加重人们对过去“是枯燥乏味、死气沉沉”的偏见。
她认为给老照片上色这种工作,还是应该交给人类专家完成。
AI,不行☝️。
此帖一出,在Reddit上的机器学习社区和历史爱好者社区引发了大激辩。
不到一天的时间盖起一千多楼,总计3万5千赞。
但后来,因为吵得太厉害,原帖都被版主删了……
来自不同社区的网友们,又在争吵些什么呢?
来自机器学习版块的选手首先提出了质疑:
你用的这个算法,他是State of the Art吗?一看就是简单地将损失函数设计成计算周围像素的均方误差(MSE)一类的东西,这样就会促使AI选择低饱和度的颜色。
有人给出了改进思路,应该把色相、饱和度和亮度的差异单独加权,然后“惩罚”异常值,减少算法选择低饱和度颜色的动机。
懂摄影的选手指出,彩色照片去除RGB通道 ≠ 黑白相机原片。像适马SD1 Merill和徕卡M Monochrom这样的专业设备传感器能捕捉到更大的动态范围。
目前的数据集为了方便,都是用彩色图像去色做的,还没见到过用真正的单色相机原片做训练的。
不服的人说,黑白照片就是有误导性。
你看这一排柿子椒,去色以后质感都一样,人类也不能分出哪些是红色哪些是绿色的。
有人认为,人们不能把AI当作魔法或奇迹,商业公司也不能把AI生成的内容当成事实去销售。这是个商业伦理问题,而不是AI伦理问题。
在照片上色爱好者聚集地,人们认为手动给老照片上色最有价值的环节其实是搜集资料。
寻找照片中事物应有颜色的过程中总是能学到很酷的历史知识。
也有人指出,在网上发布AI上色的照片,人们的焦点都放在对技术进步的庆祝了。老照片背后的人文价值却被忽略。
有人认为AI在计算光照阴影方面很强,但挑选颜色还是需要人类专家的指导。
AI应该像实习生一样成为人类的助手,而不是人们把工作全丢给AI去做。
其实人类指导AI给照片上色的研究已经有了。这项研究发表在SIGGRAPH 2017大会上。
在演示中,人类可以在灰阶图像的任意像素指定颜色,AI会自动计算适用的范围,并实时给出预览。
该算法使用卷积神经网络(CNN),灰阶图像和人类指定颜色作为输入,自动计算颜色的分布。
训练集包含130万张彩色照片的去色版本,其中包含很多著名摄影作品。每个选色的人类用户平均在每张照片上平均花费1分钟。
模型使用Caffe开发,后来补充了PyTorch版本,已在Github上开源。
CPU或GPU计算都支持,可以下一个玩玩。
Github地址:
https://github.com/junyanz/interactive-deep-colorization
论文地址:
https://arxiv.org/abs/1705.02999
SIGGRAPH演讲:
https://www.youtube.com/watch?v=rp5LUSbdsys
参考链接:
[1]https://www.reddit.com/r/MachineLearning/comments/mqqnxj/d_r_aiml_colorisation_versus_actual_color_photos/
[2]https://www.reddit.com/r/Colorization/comments/mqn103/the_problem_with_ai_colorization/
大学十年(一个程序员的路程)(林锐博士)《1----9》 收藏
美联储进入加息周期、美元指数不涨反跌、比特币能否随美股走强?
【mindspore】【算子不支持GPU】Unsupported op [Ceil] on GPU
使用TeXLive2022和VSCode安装配置步骤(LaTeX写论文)
[ROC-RK3568-PC] [Firefly-Android] 10min带你了解ADC的使用
Windows10 + WSL (Ubuntu) + Anaconda + vscode 手把手配置python运行环境(含虚拟环境)
王心凌再次爆火,为了防止收费,我连夜用Python把她所有的MV离线
论文学习:Two-Stream Convolutional Networks for Action Recognition