发布时间:2024-08-31 12:01
微服务开发涉及了一些数据处理模块的开发,每个处理业务都会开发独立的微服务,便于后面拓展和流编排。
学习了 SpringCloud Data Flow 等框架,感觉这个框架对于我们来说太重了,维护起来也比较麻烦,于是根据流编排的思想,基于我们目前的技术栈实现简单的流编排功能。
简单的说,我们希望自己的流编排就是微服务可插拔,微服务数据入口及输出可不停机修改。
准备工作
| Nacos 安装及使用入门
docker pull nacos/nacos-server
docker run --env MODE=standalone --name nacos -d -p 8848:8848 nacos/nacos-server
然后在浏览器输入 ip:8848/nacos,账号 nacos;密码 nacos。
docker 能够帮助我们快速安装服务,减少再环境准备花的时间。
| 准备三个 SpringBoot 服务,引入 Nacos 及 Kafka
org.springframework.boot
spring-boot-starter-parent
2.1.0.RELEASE
org.springframework.kafka
spring-kafka
com.alibaba.boot
nacos-config-spring-boot-starter
0.2.1
配置文件:
spring:
kafka:
bootstrap-servers: kafka-server:9092
producer:
acks: all
consumer:
group-id: node1-group #三个服务分别为node1 node2 node3
enable-auto-commit: false
# 部署的nacos服务
nacos:
config:
server-addr: nacos-server:8848
建议配置本机 host 就可以填写 xxx-server 不用填写服务 ip。
| 业务解读
node1 服务监听前置服务发送的数据流,输入的 topic 为前置数据服务输出 topic
node2 监听 node1 处理后的数据,所以 node2 监听的 topic 为 node1 输出的 topic,node3 同理,最终 node3 处理完成后将数据发送到数据流终点
我们现在要调整流程移除 node2-server,我们只需要把 node1-sink 改变成 node2-sink 即可,这样我们这几个服务就可以灵活的嵌入的不同项目的数据流处理业务中,做到即插即用(当然,数据格式这些业务层面的都是需要约定好的)
动态可调还可以保证服务某一节点出现问题时候,即时改变数据流向,比如发送到数暂存服务,避免 Kafka 中积累太多数据,吞吐不平衡
| Nacos 配置
代码如下:
@Configuration
@NacosPropertySource(dataId = "input", groupId = "node1-server", autoRefreshed = true)
// autoRefreshed=true指的是nacos中配置发生改变后会刷新,false代表只会使用服务启动时候读取到的值
@NacosPropertySource(dataId = "sink", groupId = "node1-server", autoRefreshed = true)
public class NacosConfig {
@NacosValue(value = "${input:}", autoRefreshed = true)
private String input;
@NacosValue(value = "${sink:}", autoRefreshed = true)
private String sink;
public String getInput() {
return input;
}
public String getSink() {
return sink;
}
}
/**
* 监听Nacos配置改变,创建消费者,更新消费
*/
@Component
public class ConsumerManager {
@Value("${spring.kafka.bootstrap-servers}")
private String servers;
@Value("${spring.kafka.consumer.enable-auto-commit}")
private boolean enableAutoCommit;
@Value("${spring.kafka.consumer.group-id}")
private boolean groupId;
@Autowired
private NacosConfig nacosConfig;
@Autowired
private KafkaTemplate kafkaTemplate;
// 用于存放当前消费者使用的topic
private String topic;
// 用于执行消费者线程
private ExecutorService executorService;
/**
* 监听input
*/
@NacosConfigListener(dataId = "node1-server", groupId = "input")
public void inputListener(String input) {
// 这个监听触发的时候 实际NacosConfig中input的值已经是最新的值了 我们只是需要这个监听触发我们更新消费者的业务
String inputTopic = nacosConfig.getInput();
// 我使用nacosConfig中读取的原因是因为监听到内容是input=xxxx而不是xxxx,如果使用需要自己截取一下,nacosConfig中的内容框架会处理好,大家看一下第一张图的配置内容就明白了
// 先检查当前局部变量topic是否有值,有值代表是更新消费者,没有值只需要创建即可
if(topic != null) {
// 停止旧的消费者线程
executorService.shutdownNow();
executorService == null;
}
// 根据为新的topic创建消费者
topic = inputTopic;
ThreadFactory threadFactory = new ThreadFactoryBuilder().setNameFormat(topic + "-pool-%d").build();
executorService = new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2), threadFactory);
// 执行消费业务
executorService.execute(() -> consumer(topic));
}
/**
* 创建消费者
*/
public void consumer(String topic) {
Properties properties = new Properties();
properties.put("bootstrap.servers", servers);
properties.put("enable.auto.commit", enableAutoCommit);
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("group.id", groupId);
KafkaConsumer consumer = new KafkaConsumer<>(properties);
consumer.subscribe(Arrays.asList(topic));
try {
while (!Thread.currentThread().isInterrupted()) {
Duration duration = Duration.ofSeconds(1L);
ConsumerRecords records = consumer.poll(duration);
for (ConsumerRecord record : records) {
String message = record.value();
// 执行数据处理业务 省略业务实现
String handleMessage = handle(message);
// 处理完成后发送到下一个节点
kafkaTemplate.send(nacosConfig.getSink(), handleMessage);
}
}
consumer.commitAsync();
}
} catch (Exception e) {
LOGGER.error(e.getMessage(), e);
} finally {
try {
consumer.commitSync();
} finally {
consumer.close();
}
}
}
}
总结