发布时间:2024-09-18 11:01
import torch
from torch.utils.data import Dataset,DataLoader
import os
import csv
import glob
import random
from PIL import Image
from torchvision import transforms
import visdom
from torchvision.datasets import ImageFolder
class AnimalData(Dataset):
def __init__(self,root,resize = [28,28],mode="train"):
super(AnimalData,self).__init__()
self.root = root
self.resize = resize # [h,w]
# 依据子文件夹名字获取各个类别的标签
self.class2label = {}
for name in sorted(os.listdir(os.path.join(self.root))):
if not os.path.isdir(os.path.join(self.root,name)):
continue
self.class2label[name] = len(self.class2label.keys())
print(self.class2label)
# 从csv文件中加载数据的存储路径及其标签
images,labels = self.load_csv("animal.csv")
# 根据任务需求,返回数据
if mode == "train":
self.images = images[:int(0.6*len(images))]
self.labels = labels[:int(0.6*len(images))]
elif mode == "val":
self.images = images[int(0.6 * len(images)):int(0.8 * len(images))]
self.labels = labels[int(0.6 * len(images)):int(0.8 * len(images))]
elif mode == "test":
self.images = images[int(0.8 * len(images)):]
self.labels = labels[int(0.8 * len(images)):]
def load_csv(self,file_name):
if not os.path.exists(file_name):
images = []
for name in self.class2label.keys():
# glob.glob()方法可以匹配该路径下的文件,返回完整路径
images += glob.glob(os.path.join(self.root,name,"*.png"))
images += glob.glob(os.path.join(self.root,name,".jpg"))
# 打乱数据顺序
random.shuffle(images)
# 写入csv文件,便于下次读取
with open(file_name,"w",encoding="utf-8",newline="") as f:
writer = csv.writer(f)
for path in images:
name = path.split(os.sep)[1]
label = self.class2label[name]
writer.writerow([path,label])
# 通过csv加载数据
with open(file_name,"r",encoding="utf-8") as f:
reader = csv.reader(f)
images = []
labels = []
for line in reader:
images.append(line[0])
labels.append(int(line[1]))
return images,labels
# 重写该方法,返回数据大小
def __len__(self):
return len(self.images)
# 反标准化,便于可视化
def de_normalize(self,x_hat):
mean = torch.tensor([0.485, 0.456, 0.406]).unsqueeze(1).unsqueeze(1)
std = torch.tensor([0.229, 0.224, 0.225]).unsqueeze(1).unsqueeze(1)
x = x_hat *std + mean
return x
# 重写该方法,返回Tensor格式的数据及标签
def __getitem__(self,idx):
label = torch.tensor(self.labels[idx])
tf = transforms.Compose([
lambda x: Image.open(x).convert("RGB"), # 读取图片
transforms.Resize([int(self.resize[0]*1.25),int(self.resize[1]*1.25)]),
transforms.RandomRotation(15), # 数据增强
transforms.CenterCrop(self.resize), # 中心化裁剪
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
image = tf(self.images[idx])
return image,label
if __name__ == '__main__':
resize = [128,100]
db = AnimalData(root="animal",resize=resize)
{'cat': 0, 'dog': 1, 'rabbit': 2}
if __name__ == '__main__':
resize = [128,100]
db = AnimalData(root="animal",resize=resize)
it_db = iter(db)
vis = visdom.Visdom()
image,label = next(it_db)
vis.image(db.de_normalize(image),win="iter_image",opts=dict(title="iter_image"))
# 使用数据加载器,设定batch
loader = DataLoader(dataset=db,batch_size=16,shuffle=True,num_workers=8) # num_workers参数为多线程读取数据
for x,y in loader:
vis.images(db.de_normalize(x),win="batch_imags",nrow=4,opts=dict(title="batch"))
# ImageFolder 可以一步实现上述过程
tf = transforms.Compose([
transforms.Resize([int(resize[0] * 1.25), int(resize[1] * 1.25)]),
transforms.RandomRotation(15), # 数据增强
transforms.CenterCrop(resize), # 中心化裁剪
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
db = ImageFolder(root = "animal",
transform=tf)
by CyrusMay 2022 06 30
一生要有多少的辗转
才能走到幸福的彼岸
才能 活得此生无恨无憾
平凡却不平淡
——————五月天(青空未来)——————
【JavaScript】巩固JS开发中十个常用功能/案例(21-30)(牛客题解)
Intelij Error:Kotlin: Unknown JVM target version: 11 Supported versions: 1.6, 1.8
XGBoost、LightGBM与CatBoost算法对比与调参
istio 服务网格_如何在Kubernetes上使用Istio服务网格设置JHipster微服务
有一群200w年薪的朋友是什么感觉?谈一谈入学中国科学院大学的几点感受吧
Kafka在Linux服务器下载安装配置等详细图文版本(全)