发布时间:2024-11-04 09:01
from torch.nn import init
import torch.nn as nn
import math
import time
import torch
from torchvision import transforms
from sklearn.model_selection import train_test_split
import numpy as np
import torch.nn.functional as F
import pandas as pd
import torchvision
第一步:定义好网络
#网络1
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50) #4*4*20
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x,dim=1)
第二步:定义好参数
#定义批次大小(每次传递512条记录给模型训练,充分利用矩阵计算的并行性能)
batch_size=512
#定义训练epoch
epoch=20
#定义模型
model=Net()
#初始化权重参数
for layer in model.modules():
if isinstance(layer,nn.Linear):
init.xavier_uniform_(layer.weight)
#定义优化器
optimizer=torch.optim.Adam(model.parameters(),0.001)
#定义损失函数
criterion=nn.CrossEntropyLoss()#创建交叉熵函数
#定义损失函数数组,用于可视化训练过程
loss_holder=[]
#损失值设为无限大,每次迭代若损失值比loss_value小则保存模型,并将最新的损失值赋给loss_value
loss_value=np.inf
step=0
第三步:加载数据集
minist数据集训练集有60000张照片,测试集有10000张照片。
batch_size=512,所以有118组batch_size
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(\'./data/\', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(\'./data/\', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=False)
第四步:训练
for i in range(epoch):
for batch_idx, (data,label) in enumerate(train_loader):
#输出值
outputs = model(data)
#损失值
loss = criterion(outputs, label)
#反向传播,将所有梯度的参数清0,否则该步的梯度会和前面已经计算的梯度累乘
optimizer.zero_grad()
loss.backward()
#更新参数
optimizer.step()
#记录误差
print(\'epoch{},Train loss{:.6f},Dealed/Records:{}/{}\'.format(i,loss/batch_size,(batch_idx+1)*batch_size,60000))
if batch_idx%20==0:
step+=1
loss_holder.append([step,loss/batch_size])
#模型性能有所提升则保存模型,并更新loss_value
if batch_idx%20==0 and loss
第五步:绘图。每20次保留一次loss可以看出大概迭代了120次(20个epoch,每个epoch有118个batch_idx,每20个batch_idx保留一次),从图中可以看出,经历了10次迭代后就逐渐稳定下来了。
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(20,15))
#x轴斜体避免重叠
fig.autofmt_xdate()
loss_df=pd.DataFrame(loss_holder,columns=[\'time\',\'loss\'])
x_times=loss_df[\'time\'].values
plt.ylabel(\'loss\')
plt.xlabel(\'times\')
plt.plot(loss_df[\'loss\'].values)
plt.xticks([10,30,50,70,80,100,120,140,160,200])
plt.show()
第六步:接下来用训练好的模型来进行测试.
#读取模型
model_path=\'model.ckpt\'
model=torch.load(model_path)
#转化为测试模式
model.eval()
for layer in model.modules():
layer.requires_grad=False
for batch_idx, (data,label) in enumerate(test_loader):
#只进行前向传播,不进行反向传播
outputs = model(data)
loss = criterion(outputs, label)
print(\'Test loss{:.6f},Dealed/Records:{}/{}\'.format(loss/batch_size,(batch_idx+1)*batch_size,60000))