发布时间:2024-11-06 19:01
本研究生终于学完了基础部分的神经网络!!!现在来到《PyTorch深度学习实践》第四章——迁移学习,站在巨人的肩膀上学习!
>首先是卷积操作
>输入数据:3×224×224;(3是通道数,可以认为是图片的张数)
>过滤器:11×11,stride=4,个数是3×96个(96组,每组3个)
>输出数据:96×55×55 (可以理解为是96张55×55的特征图)
>然后使用ReLU函数,使得特征图内的数值均保持在合理的范围内。
>接着使用3×3的核进行池化:
> 输入数据:96×55×55
> 核:3×3,stride=2
> 输出数据:96×27×27
>首先是卷积操作
>输入数据:96×27×27;
>过滤器:5×5,stride=1,个数是96×256个(256组,每组96个)
>输出数据:256×27×27 (可以理解为是256张27×27的特征图)
>然后使用ReLU函数,使得特征图内的数值均保持在合理的范围内。
>接着使用3×3的核进行池化:
> 输入数据:256×27×27
> 核:3×3,stride=2
> 输出数据:256×13×13
>首先是卷积操作
>输入数据:256×13×13;
>过滤器:3×3,stride=1,个数是256×384个(384组,每组256个)
>输出数据:384×13×13
>然后使用ReLU函数,使得特征图内的数值均保持在合理的范围内。
>首先是卷积操作
>输入数据:384×13×13;
>过滤器:3×3,stride=1,个数是384×384个(384组,每组384个)
>输出数据:384×13×13
>然后使用ReLU函数,使得特征图内的数值均保持在合理的范围内。
>首先是卷积操作
>输入数据:384×13×13;
>过滤器:3×3,stride=2,个数是384×256个(256组,每组384个)
>输出数据:256×6×6
>然后使用ReLU函数,使得特征图内的数值均保持在合理的范围内。
>首先全连接操作
>输入数据:256×6×6;(是9216个神经元节点)
>输出数据:2048个神经元节点
>然后使用ReLU函数,使得特征图内的数值均保持在合理的范围内。
>再进行
>首先将2048个神经元节点全连接到2048个神经元节点上
>然后经过ReLU层激活,进行Dropout
>将2048个神经元节点全连接到1000个神经元节点上
>(因为这里是1000分类的问题)
[16, 48, 27, 238, 12]
归一化为[-0.5441, -0.2105, -0.4294, 1.7698, -0.5858]
https://download.csdn.net/download/weixin_42521185/85052167
import torch
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import os
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
data_transforms = {
\'train\': transforms.Compose([
transforms.Scale(230),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
]),
\'test\': transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
}
data_directory = \'data\'
trainset = datasets.ImageFolder(os.path.join(data_directory, \'train\'),
data_transforms[\'train\'])
testset = datasets.ImageFolder(os.path.join(data_directory,\'test\'),
data_transforms[\'test\'])
trainloader = DataLoader(trainset, batch_size=5, shuffle=True,
num_workers=4)
testloader = DataLoader(testset, batch_size=5, shuffle=True,
num_workers=4)
def imshow(inputs):
inputs = inputs / 2 + 0.5
inputs = inputs.numpy().transpose((1, 2, 0))
plt.imshow(inputs)
plt.show()
if __name__ == \'__main__\':
inputs, classes = next(iter(trainloader))
imshow(torchvision.utils.make_grid(inputs))
pretrained=True
表示加载经过了ImageNet数据集训练之后的模型参数。from torchvision import models
alexnet = models.alexnet(pretrained=True)
print(alexnet)
AlexNet(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU(inplace=True)
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU(inplace=True)
(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU(inplace=True)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU(inplace=True)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
(classifier): Sequential(
(0): Dropout(p=0.5, inplace=False)
(1): Linear(in_features=9216, out_features=4096, bias=True)
(2): ReLU(inplace=True)
(3): Dropout(p=0.5, inplace=False)
(4): Linear(in_features=4096, out_features=4096, bias=True)
(5): ReLU(inplace=True)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)
import torch.nn as nn
for param in alexnet.parameters():
param.requires_grad = False
alexnet.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256*6*6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, 2)
)
import torch
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import os
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch import optim
from torchvision import models
import torch.nn as nn
data_transforms = {
\'train\': transforms.Compose([
transforms.Scale(230),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
]),
\'test\': transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
]),
}
data_directory = \'data\'
trainset = datasets.ImageFolder(os.path.join(data_directory, \'train\'), data_transforms[\'train\'])
testset = datasets.ImageFolder(os.path.join(data_directory, \'test\'), data_transforms[\'test\'])
trainloader = torch.utils.data.DataLoader(trainset, batch_size=5, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=5, shuffle=True, num_workers=2)
# def imshow(inputs):
#
# inputs = inputs / 2 + 0.5
# inputs = inputs.numpy().transpose((1, 2, 0))
# # print inputs
# plt.imshow(inputs)
# plt.show()
#
# inputs,classes = next(iter(trainloader))
#
# imshow(torchvision.utils.make_grid(inputs))
alexnet = models.alexnet(pretrained=True)
resnet152 = models.resnet18(pretrained=True)
# %%
for param in alexnet.parameters():
param.requires_grad = False
alexnet.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, 2), )
CUDA = torch.cuda.is_available()
if CUDA:
alexnet = alexnet.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(alexnet.classifier.parameters(), lr=0.001, momentum=0.9)
def train(model, criterion, optimizer, epochs=1):
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
if CUDA:
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9:
print(\'[Epoch:%d, Batch:%5d] Loss: %.3f\' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print(\'Finished Training\')
def test(testloader, model):
correct = 0
total = 0
for data in testloader:
images, labels = data
if CUDA:
images = images.cuda()
labels = labels.cuda()
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print(\'Accuracy on the test set: %d %%\' % (100 * correct / total))
def load_param(model, path):
if os.path.exists(path):
model.load_state_dict(torch.load(path))
def save_param(model, path):
torch.save(model.state_dict(), path)
if __name__ == \'__main__\':
# load_param(alexnet,\'tl_model.pkl\')
train(alexnet, criterion, optimizer, epochs=5)
save_param(alexnet, \'./data/models/tl_model.pth\')
test(testloader, alexnet)