发布时间:2022-10-04 10:30
单位:清华,南开(程明明团队)
ArXiv:https://arxiv.org/abs/2202.09741
Github: https://github.com/Visual-Attention-Network
导读:
今天了解一个卷积的新操作,即解耦卷积。说是新,其实旧,比如MobileNet为了高效率地推断,将一个标准的CNN看成一个Depth-wise CNN和Point-wise CNN,即解耦。本篇文章将一个更大的卷积核解耦成三个不同类型的CNN操作。虽然取得了超过众多SOTA的性能,但是在MLP中采用经典的DW-FFN,究竟是MLP带来了性能提升,还是大核注意力起了作用,有点存疑!