发布时间:2022-11-26 15:30
随着人工智能、云计算、大数据、互联网、物联网等信息化、数字化前沿技术的应用,数据已经成为了继土地、劳动力、资本和技术之后的第五大生产要素,尤其是在业务、数据较多的商业世界中,数据价值已经切实影响到了企业的发展,真正从一串“数字”变为了企业的重要资产。
在数据越来越重要的未来,或者说在数据已经发挥了大量价值的当下,数据分析这一理解数据、挖掘数据背后价值的重要过程,成为了企业必备的基础建设,也是企业判断企业发展,进行管理决策的重要依据。
在数据分析整个流程的环节中,处于最后阶段的数据分析报告确实很多数据分析人员长期忽略的地方。数据分析,分析出来是要给企业的业务、管理等有分析需求的人员看的,需要针对性进行优化,降低阅读门槛,简洁直观展示分析信息,充分发挥数据分析的作用。
所以,如果在实际工作中能够写出一份高质量、高价值,有足够的信息增量,能够辅助业务决策的数据分析报告,才能说数据分析工作确实做出了成效。
数据分析是一个复杂的流程,并且在企业中数据分析人员进行分析都是根据企业需求和业务需求来进行数据分析工作的,所以不能只按照自己的想法来撰写数据分析报告。
数据可视化 - 派可数据商业智能BI可视化分析平台
实际上,企业的数据分析工作中,数据分析人员通常会根据报告需求方的要求来安排相应的报告类型,比方说是日报、周报还是销售分析、市场分析等,根据分析需求的不同,数据分析人员会将报告分为日常工作类、专题分析类以及综合研究类报告。
其实日常工作类报告从名字上我们就能看出这种分析报告的需求,一般来说日常工作类报告会根据分析时间的不同,划分为日报、周报、月报、季报、年报等不同的模板形式。至于不同时间模板里的内容,更多的是用于限定场景和限定时间内对业务情况进行分析,一般不会有太多的变动,主要输出业务信息,相对来说分析过程比较固化,偏向于展现业务数据、核心指标等。
数据可视化 - 派可数据商业智能BI可视化分析平台
数据分析人员在制作日常工作类报告时,不需要为分析过程进行过多旁白式的描述,更多是根据数据作出判断,探究企业业务有没有出现异常,是增长还是下降等简单的逻辑信息判断。举几个例子,日常销售报告、账号运营周报、产品市场月报等都属于此类。
专题分析类报告其实就是我们常说的主题性质的报告,这种分析报告通常会以企业某个部门、某条业务线、产品线和事业群等作为分析目标,比如销售业务分析、运营部门发展分析等,选定一个符合业务需求的专题进行分析,有较高的信息增量,能够辅助业务和管理人员对发展规划进行调整。
数据可视化 - 派可数据商业智能BI可视化分析平台
数据分析人员在制作此类报告时,需要和业务人员提前进行沟通,调研企业业务基本状况,了解相关的业务指标、业务市场及业务需求等深度信息,结合数据对业务进行深入分析。举个例子,企业电商部门销量出现了异常状况,数据分析人员需要及时根据业务情况,用专题分析报告来分析问题原因。
不同于日常工作类报告和专题分析类报告都是有一定限制的,偏向于分析展示单一业务情况的报告,综合研究类报告所用的数据比较全面,都是选择整个企业的数据全面评价一个地区、部门、业务线、事业群或其他方面发展情况的一种数据分析报告。
数据可视化 - 派可数据商业智能BI可视化分析平台
数据分析人员在制作综合研究类报告时,首要考虑的就是全面性,哪怕是进行销售部门的综合研究类报告,也要把生产部门的商品数量、市场部门的推广展现数据统一进行汇总分析,从宏观角度反映不同业务指标之间的关系,并站在全局视角反映总体特征,做出总体评价。