技术解析|Doris Connector 结合 Flink CDC 实现 MySQL 分库分表 Exactly Once精准接入

发布时间:2022-08-19 11:24

1. 概述

在实际业务系统中为了解决单表数据量大带来的各种问题,我们通常采用分库分表的方式对库表进行拆分,以达到提高系统的吞吐量。

但是这样给后面数据分析带来了麻烦,这个时候我们通常试将业务数据库的分库分表同步到数据仓库时,将这些分库分表的数据,合并成一个库,一个表。便于我们后面的数据分析

本篇文档我们就演示怎么基于Flink CDC 并结合 Apache Doris Flink Connector 及 Doris Stream Load的两阶段提交,实现MySQL数据库分库分表实时高效的接入到 Apache Doris 数据仓库中进行分析。

1.1 什么是CDC

CDC是(Change Data Capture 变更数据获取)的简称。

核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的插入INSERT、更新UPDATE、删除DELETE等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。

CDC 技术应用场景也非常广泛,包括:

数据分发,将一个数据源分发给多个下游,常用于业务解耦、微服务。

数据集成,将分散异构的数据源集成到数据仓库中,消除数据孤岛,便于后续的分析。

数据迁移,常用于数据库备份、容灾等。

1.2 为什么选择Flink CDC

Flink CDC 基于数据库日志的Change Data Caputre 技术,实现了全量和增量的一体化读取能力,并借助 Flink 优秀的管道能力和丰富的上下游生态,支持捕获多种数据库的变更,并将这些变更实时同步到下游存储。

目前,Flink CDC 的上游已经支持了 MySQL、MariaDB、PG、Oracle、MongoDB 、Oceanbase、TiDB、SQLServer等数据库。

Flink CDC 的下游则更加丰富,支持写入 Kafka、Pulsar 消息队列,也支持写入 Hudi、Iceberg 、Doris等,支持写入各种数据仓库及数据湖中。

同时,通过 Flink SQL 原生支持的 Changelog 机制,可以让 CDC 数据的加工变得非常简单。用户可以通过 SQL 便能实现数据库全量和增量数据的清洗、打宽、聚合等操作,极大地降低了用户门槛。 此外, Flink DataStream API 支持用户编写代码实现自定义逻辑,给用户提供了深度定制业务的自由度

Flink CDC 技术的核心是支持将表中的全量数据和增量数据做实时一致性的同步与加工,让用户可以方便地获每张表的实时一致性快照。比如一张表中有历史的全量业务数据,也有增量的业务数据在源源不断写入,更新。Flink CDC 会实时抓取增量的更新记录,实时提供与数据库中一致性的快照,如果是更新记录,会更新已有数据。如果是插入记录,则会追加到已有数据,整个过程中,Flink CDC 提供了一致性保障,即不重不丢。

FLink CDC 如下优势:

  • Flink 的算子和 SQL 模块更为成熟和易用
  • Flink 作业可以通过调整算子并行度的方式,轻松扩展处理能力
  • Flink 支持高级的状态后端(State Backends),允许存取海量的状态数据
  • Flink 提供更多的 Source 和 Sink 等生态支持
  • Flink 有更大的用户基数和活跃的支持社群,问题更容易解决

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号