发布时间:2023-03-07 18:30
更多内容关注微信公众号:fullstack888
Redis作为内存数据库,拥有非常高的性能,单个实例的QPS能够达到10W左右。但我们在使用Redis时,经常时不时会出现访问延迟很大的情况,如果你不知道Redis的内部实现原理,在排查问题时就会一头雾水。
很多时候,Redis出现访问延迟变大,都与我们的使用不当或运维不合理导致的。
这篇文章我们就来分析一下Redis在使用过程中,经常会遇到的延迟问题以及如何定位和分析。
如果在使用Redis时,发现访问延迟突然增大,如何进行排查?
首先,第一步,建议你去查看一下Redis的慢日志。Redis提供了慢日志命令的统计功能,我们通过以下设置,就可以查看有哪些命令在执行时延迟比较大。
首先设置Redis的慢日志阈值,只有超过阈值的命令才会被记录,这里的单位是微妙,例如设置慢日志的阈值为5毫秒,同时设置只保留最近1000条慢日志记录:
# 命令执行超过5毫秒记录慢日志
CONFIG SET slowlog-log-slower-than 5000
# 只保留最近1000条慢日志
CONFIG SET slowlog-max-len 1000
设置完成之后,所有执行的命令如果延迟大于5毫秒,都会被Redis记录下来,我们执行SLOWLOG get 5
查询最近5条慢日志:
127.0.0.1:6379> SLOWLOG get 5
1) 1) (integer) 32693 # 慢日志ID
2) (integer) 1593763337 # 执行时间
3) (integer) 5299 # 执行耗时(微妙)
4) 1) "LRANGE" # 具体执行的命令和参数
2) "user_list_2000"
3) "0"
4) "-1"
2) 1) (integer) 32692
2) (integer) 1593763337
3) (integer) 5044
4) 1) "GET"
2) "book_price_1000"
...
通过查看慢日志记录,我们就可以知道在什么时间执行哪些命令比较耗时,如果你的业务经常使用O(n)
以上复杂度的命令,例如sort
、sunion
、zunionstore
,或者在执行O(n)
命令时操作的数据量比较大,这些情况下Redis处理数据时就会很耗时。
如果你的服务请求量并不大,但Redis实例的CPU使用率很高,很有可能是使用了复杂度高的命令导致的。
解决方案就是,不使用这些复杂度较高的命令,并且一次不要获取太多的数据,每次尽量操作少量的数据,让Redis可以及时处理返回。
如果查询慢日志发现,并不是复杂度较高的命令导致的,例如都是SET
、DELETE
操作出现在慢日志记录中,那么你就要怀疑是否存在Redis写入了大key的情况。
Redis在写入数据时,需要为新的数据分配内存,当从Redis中删除数据时,它会释放对应的内存空间。
如果一个key写入的数据非常大,Redis在分配内存时也会比较耗时。同样的,当删除这个key的数据时,释放内存也会耗时比较久。
你需要检查你的业务代码,是否存在写入大key的情况,需要评估写入数据量的大小,业务层应该避免一个key存入过大的数据量。
那么有没有什么办法可以扫描现在Redis中是否存在大key的数据吗?
Redis也提供了扫描大key的方法:
redis-cli -h $host -p $port --bigkeys -i 0.01
使用上面的命令就可以扫描出整个实例key大小的分布情况,它是以类型维度来展示的。
需要注意的是当我们在线上实例进行大key扫描时,Redis的QPS会突增,为了降低扫描过程中对Redis的影响,我们需要控制扫描的频率,使用-i
参数控制即可,它表示扫描过程中每次扫描的时间间隔,单位是秒。
使用这个命令的原理,其实就是Redis在内部执行scan
命令,遍历所有key,然后针对不同类型的key执行strlen
、llen
、hlen
、scard
、zcard
来获取字符串的长度以及容器类型(list/dict/set/zset)的元素个数。
而对于容器类型的key,只能扫描出元素最多的key,但元素最多的key不一定占用内存最多,这一点需要我们注意下。不过使用这个命令一般我们是可以对整个实例中key的分布情况有比较清晰的了解。
针对大key的问题,Redis官方在4.0版本推出了lazy-free
的机制,用于异步释放大key的内存,降低对Redis性能的影响。即使这样,我们也不建议使用大key,大key在集群的迁移过程中,也会影响到迁移的性能,这个后面在介绍集群相关的文章时,会再详细介绍到。
有时你会发现,平时在使用Redis时没有延时比较大的情况,但在某个时间点突然出现一波延时,而且报慢的时间点很有规律,例如某个整点,或者间隔多久就会发生一次。
如果出现这种情况,就需要考虑是否存在大量key集中过期的情况。
如果有大量的key在某个固定时间点集中过期,在这个时间点访问Redis时,就有可能导致延迟增加。
Redis的过期策略采用主动过期+懒惰过期两种策略:
主动过期:Redis内部维护一个定时任务,默认每隔100毫秒会从过期字典中随机取出20个key,删除过期的key,如果过期key的比例超过了25%,则继续获取20个key,删除过期的key,循环往复,直到过期key的比例下降到25%或者这次任务的执行耗时超过了25毫秒,才会退出循环
懒惰过期:只有当访问某个key时,才判断这个key是否已过期,如果已经过期,则从实例中删除
教你在VMware中安装Windows11操作系统的保姆级教程
分布式 | 浅谈 dble 引入 ClickHouse 的配置操作
非常详细的相机标定原理(三)(张正友相机标定法初见和单应性矩阵)
C语言字符串函数操作(strlen,strcpy,strcat,strcmp)详解
C#基于BytesIO程序包的TCP Client客户端窗体程序
(三)青龙面板必备配置文件config.sh综合环境配置+必备的步骤之一/保姆:少爷吃饭了【2022年5月4日】
verilog仿真系统任务$fopen/$fdisplay/$readmemh 应用