发布时间:2023-06-19 17:30
JVM 在对代码执行的优化可分为运行时(runtime)优化和即时编译器(JIT)优化。运行时优化主要是解释执行和动态编译通用的一些机制,比如说锁机制(如偏斜锁)、内存分配机制(如 TLAB)等。除此之外,还有一些专门用于优化解释执行效率的,比如说模版解释器、内联缓存(inline cache,用于优化虚方法调用的动态绑定)。
JVM 的即时编译器优化是指将热点代码以方法为单位转换成机器码,直接运行在底层硬件之上。它采用了多种优化方式,包括静态编译器可以使用的如方法内联、逃逸分析,也包括基于程序运行 profile 的投机性优化(speculative/optimistic optimization)。这个怎么理解呢?比如我有一条 instanceof 指令,在编译之前的执行过程中,测试对象的类一直是同一个,那么即时编译器可以假设编译之后的执行过程中还会是这一个类,并且根据这个类直接返回 instanceof 的结果。如果出现了其他类,那么就抛弃这段编译后的机器码,并且切换回解释执行。
当然,JVM 的优化方式仅仅作用在运行应用代码的时候。如果应用代码本身阻塞了,比如说并发时等待另一线程的结果,这就不在 JVM 的优化范畴啦。
面试题1:如何在生产实践中,与 JIT 等 JVM 模块进行交互?该题落实到如何真正进行实际调优。
首先,我们从整体的角度来看看 Java 代码的整个生命周期,可以参考如下的示意图
Java 通过引入字节码这种中间表达方式,屏蔽了不同硬件的差异,由 JVM 负责完成从字节码到机器码的转化。
通常所说的编译期,是指 javac 等编译器或者相关 API 等将源码转换成为字节码的过程,这个阶段也会进行少量类似常量折叠之类的优化,只要利用反编译工具,就可以直接查看细节。
java优化与 JVM 内部优化也存在关联,毕竟它负责了字节码的生成。例如,Java 9 中的字符串拼接,会被 javac 替换成对 StringConcatFactory 的调用,进而为 JVM 进行字符串拼接优化提供了统一的入口。在实际场景中,还可以通过不同的策略选项来干预这个过程。
在通常情况下,编译器和解释器是共同起作用的,具体流程可以参考下面的示意图
JVM 会根据统计信息,动态决定什么方法被编译,什么方法解释执行,即使是已经编译过的代码,也可能在不同的运行阶段不再是热点,JVM 有必要将这种代码从 Code Cache 中移除出去,毕竟其大小是有限的。
JVM的优化方式:
Intrinsic 机制,或者叫作内建方法,就是针对特别重要的基础方法,JDK 团队直接提供定制的实现,利用汇编或者编译器的中间表达方式编写,然后 JVM 会直接在运行时进行替换
这么做的理由有很多,例如,不同体系结构的 CPU 在指令等层面存在着差异,定制才能充分发挥出硬件的能力。我们日常使用的典型字符串操作、数组拷贝等基础方法,Hotspot 都提供了内建实现。
而即时编译器(JIT),则是更多优化工作的承担者。JIT 对 Java 编译的基本单元是整个方法,通过对方法调用的计数统计,甄别出热点方法,编译为本地代码。另外一个优化场景,则是最针对所谓热点循环代码,利用通常说的栈上替换技术(OSR,On-Stack Replacement,更加细节请参考R 大的文章),如果方法本身的调用频度还不够编译标准,但是内部有大的循环之类,则还是会有进一步优化的价值。
从理论上来看,JIT 可以看作就是基于两个计数器实现,方法计数器和回边计数器提供给 JVM 统计数据,以定位到热点代码。实际中的 JIT 机制要复杂得多,郑博士提到了逃逸分析、循环展开、方法内联等,包括前面提到的 Intrinsic 等通用机制同样会在 JIT 阶段发生。
JIT 的默认门限,server 模式默认 10000 次,client 是 1500 次。门限大小也存在着调优的可能,可以使用下面的参数调整;与此同时,该参数还可以变相起到降低预热时间的作用。
很多人可能会产生疑问,既然是热点,不是早晚会达到门限次数吗?这个还真未必,因为 JVM 会周期性的对计数的数值进行衰减操作,导致调用计数器永远不能达到门限值,除了可以利用 CompileThreshold 适当调整大小,还有一个办法就是关闭计数器衰减。
3、调整 Code Cache 大小
我们知道 JIT 编译的代码是存储在 Code Cache 中的,需要注意的是 Code Cache 是存在大小限制的,而且不会动态调整。这意味着,如果 Code Cache 太小,可能只有一小部分代码可以被 JIT 编译,其他的代码则没有选择,只能解释执行。所以,一个潜在的调优点就是调整其大小限制。
当然,也可以调整其初始大小。
注意,在相对较新版本的 Java 中,由于分层编译(Tiered-Compilation)的存在,Code Cache 的空间需求大大增加,其本身默认大小也被提高了。
调整编译器线程数,或者选择适当的编译器模式
JVM 的编译器线程数目与我们选择的模式有关,选择 client 模式默认只有一个编译线程,而 server 模式则默认是两个,如果是当前最普遍的分层编译模式,则会根据 CPU 内核数目计算 C1 和 C2 的数值,你可以通过下面的参数指定的编译线程数。
在强劲的多处理器环境中,增大编译线程数,可能更加充分的利用 CPU 资源,让预热等过程更加快速;但是,反之也可能导致编译线程争抢过多资源,尤其是当系统非常繁忙时。例如,系统部署了多个 Java 应用实例的时候,那么减小编译线程数目,则是可以考虑的。
生产实践中,也有人推荐在服务器上关闭分层编译,直接使用 server 编译器,虽然会导致稍慢的预热速度,但是可能在特定工作负载上会有微小的吞吐量提高。