发布时间:2022-08-19 13:14
之前看了一篇文章,里面提到了使用@Async注解的两个问题,第一个是Spring中实现@Async注解的线程池的阻塞队列是无界队列LinkedBlockingQueue,这就导致最大线程数的配置是无效的,如果异步任务很多且执行时间较长,会导致任务一直堆积在队列中,任务延迟很大。第二个问题是在SpringBoot中,如果没有自定义线程池实例,那么SpringBoot会使用默认的线程池,这个默认线程池是SimpleAsyncTaskExecutor,这种线程池是会为每个任务创建一个线程去执行,可能会引起资源问题。
因为项目中也用到了@Async注解,为了了解@Async的原理,决定从头开始撸一遍SpringBoot中的@Async注解的源码。
先看@EnableAsync注解
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Import(AsyncConfigurationSelector.class)
public @interface EnableAsync {
/**
* 自定义异步注解,@Async和@javax.ejb.Asynchronous默认是会被检测到的
*/
Class<? extends Annotation> annotation() default Annotation.class;
/**
* 表示是否使用子类代理(CGLIB)还是基于接口的代理(JDK代理)
*/
boolean proxyTargetClass() default false;
/**
* 表示使用哪种advice,PROXY是基于代理的,另外一种是切面织入形式的
*/
AdviceMode mode() default AdviceMode.PROXY;
/**
* 表示AsyncAnnotationBeanPostProcessor这个后置处理器的应用顺序
*/
int order() default Ordered.LOWEST_PRECEDENCE;
}
@Import注解导入了AsyncConfigurationSelector类,继承自AdviceModeImportSelector
public class AsyncConfigurationSelector extends AdviceModeImportSelector<EnableAsync> {
private static final String ASYNC_EXECUTION_ASPECT_CONFIGURATION_CLASS_NAME =
"org.springframework.scheduling.aspectj.AspectJAsyncConfiguration";
/**
* 根据@EnableAsync的mode属性返回不同配置类
*/
@Override
public String[] selectImports(AdviceMode adviceMode) {
switch (adviceMode) {
case PROXY:
return new String[] { ProxyAsyncConfiguration.class.getName() };
case ASPECTJ:
return new String[] { ASYNC_EXECUTION_ASPECT_CONFIGURATION_CLASS_NAME };
default:
return null;
}
}
}
/**
* 基于注解的mode属性来获取imports的基类
*/
public abstract class AdviceModeImportSelector<A extends Annotation> implements ImportSelector {
public static final String DEFAULT_ADVICE_MODE_ATTRIBUTE_NAME = "mode";
protected String getAdviceModeAttributeName() {
return DEFAULT_ADVICE_MODE_ATTRIBUTE_NAME;
}
/**
* 获取泛型注解的mode属性,调用子类的selectImports(AdviceMode adviceMode)方法获取import配置类
* AnnotationMetadata importingClassMetadata是SpringBoot启动类的上获取的注解(我当前项目上就@EnableAsync, @SpringBootApplication两个注解), ConfigurationClassParser的processImports方法传进来的
*/
@Override
public final String[] selectImports(AnnotationMetadata importingClassMetadata) {
//获取当前类的泛型参数(我自己Debug时就是@EnableAsync, getClass()获取到的是AsyncConfigurationSelector的class对象)
Class<?> annoType = GenericTypeResolver.resolveTypeArgument(getClass(), AdviceModeImportSelector.class);
//获取指定当前泛型注解属性和值
AnnotationAttributes attributes = AnnotationConfigUtils.attributesFor(importingClassMetadata, annoType);
if (attributes == null) {
throw new IllegalArgumentException(String.format(
"@%s is not present on importing class '%s' as expected",
annoType.getSimpleName(), importingClassMetadata.getClassName()));
}
//获取mode属性值
AdviceMode adviceMode = attributes.getEnum(this.getAdviceModeAttributeName());
//调用子类获取import配置类
String[] imports = selectImports(adviceMode);
if (imports == null) {
throw new IllegalArgumentException(String.format("Unknown AdviceMode: '%s'", adviceMode));
}
return imports;
}
/**
* 根据mode值返回import类完全限定名的数组
*/
protected abstract String[] selectImports(AdviceMode adviceMode);
}
看完AsyncConfigurationSelector类的结构,再看下这个类是在哪实例化的,然后再看调用了哪些方法。
AsyncConfigurationSelector是在ConfigurationClassParser的processImports方法实例化的,而获取所有Import是通过ConfigurationClassParser的Set getImports(SourceClass sourceClass)方法,从启动类注解开始,递归遍历所有注解上的@Import注解,获取@Import注解的value值。ConfigurationClassParser的processImports方法循环遍历所有Import的value值,对每一个调用上图578行代码实例化selector,实例化每个selector后,会继续调用每个selector的selectImports(adviceMode)方法,获取到每个selector配置的imports配置类,对这些配置类继续递归调用ConfigurationClassParser的processImports方法实例化每个import配置类。这样就实现了@Import注解的功能,根据配置导入相应的配置类。
关于@Import可以参考这篇文章 @Import注解使用
@Configuration
@Role(BeanDefinition.ROLE_INFRASTRUCTURE)
public class ProxyAsyncConfiguration extends AbstractAsyncConfiguration {
@Bean(name = TaskManagementConfigUtils.ASYNC_ANNOTATION_PROCESSOR_BEAN_NAME)
@Role(BeanDefinition.ROLE_INFRASTRUCTURE)
public AsyncAnnotationBeanPostProcessor asyncAdvisor() {
Assert.notNull(this.enableAsync, "@EnableAsync annotation metadata was not injected");
AsyncAnnotationBeanPostProcessor bpp = new AsyncAnnotationBeanPostProcessor();
Class<? extends Annotation> customAsyncAnnotation = this.enableAsync.getClass("annotation");
if (customAsyncAnnotation != AnnotationUtils.getDefaultValue(EnableAsync.class, "annotation")) {
bpp.setAsyncAnnotationType(customAsyncAnnotation);
}
if (this.executor != null) {
bpp.setExecutor(this.executor);
}
if (this.exceptionHandler != null) {
bpp.setExceptionHandler(this.exceptionHandler);
}
bpp.setProxyTargetClass(this.enableAsync.getBoolean("proxyTargetClass"));
bpp.setOrder(this.enableAsync.<Integer>getNumber("order"));
return bpp;
}
}
ProxyAsyncConfiguration这个类主要功能是声明了AsyncAnnotationBeanPostProcessor这个Bean,就是异步注解后置处理器,首先需要看下AsyncAnnotationBeanPostProcessor这个类的结构
Serializable序列化接口,ProxyConfig代理相关的统一配置类,Ordered顺序优先级接口,AopInfrastructureBean是标识当前这个类是基础的类不允许被代理。
Aware接口是应用程序感知Spring框架一些功能的接口。比如BeanFactoryAware接口能获取Spring的BeanFactory,实现了该接口的类在实例化时,Spring框架会将BeanFactory传到重写的setBeanFactory(BeanFactory beanFactory)方法里面。BeanClassLoaderAware接口能够获取Spring的BeanClassLoader。关于Aware可以参考这篇文章 Spring中的aware接口
BeanPostProcessor接口是Bean的后置处理器,在Bean实例化后、属性设置完毕,自定义初始化方法执行之前和之后进行bean的处理。关于Spring后置处理器可以看这篇文章 后置处理器的使用
ProxyProcessorSupport类主要有两个功能,第一个是实现了BeanClassLoaderAware接口设置类加载器,第二个是protected void evaluateProxyInterfaces(Class> beanClass, ProxyFactory proxyFactory)方法,用来判断bean是否使用基于类的代理,如果不是,把需要代理的接口加到代理工厂里面。
下面重点讲解下面三个类
/**
*
*/
public abstract class AbstractAdvisingBeanPostProcessor extends ProxyProcessorSupport implements BeanPostProcessor {
/**
* Advisor是一个基本接口,持有一个Advice(在连接点采取的操作)和一个确定Advice使用范围的过滤器(比如切入点),是为了支持不同类型Advice提供的抽象
* 实例化AsyncAnnotationBeanPostProcessor,初始化该属性的时候,传进来的实际类型是AsyncAnnotationAdvisor
*/
@Nullable
protected Advisor advisor;
/**
* 如果当前传进来的bean是Advised类型,且持有很多Advisor,是否把当前Advisor放在最前面
*/
protected boolean beforeExistingAdvisors = false;
/**
* bean对象和是否能被当前后置处理器的advisor处理的一个Map缓存,因为同一bean会走项目所有的后置处理器,当前这个抽象类有很多子类,使用缓存可以加快效率
*/
private final Map<Class<?>, Boolean> eligibleBeans = new ConcurrentHashMap<>(256);
public void setBeforeExistingAdvisors(boolean beforeExistingAdvisors) {
this.beforeExistingAdvisors = beforeExistingAdvisors;
}
//重写的初始化之前的操作,直接返回
@Override
public Object postProcessBeforeInitialization(Object bean, String beanName) {
return bean;
}
@Override
public Object postProcessAfterInitialization(Object bean, String beanName) {
if (this.advisor == null || bean instanceof AopInfrastructureBean) {
// Ignore AOP infrastructure such as scoped proxies.
return bean;
}
//如果当前传进来的Bean是Advised类型,把当前的advisor放到一起管理
if (bean instanceof Advised) {
Advised advised = (Advised) bean;
if (!advised.isFrozen() && isEligible(AopUtils.getTargetClass(bean))) {
//当前Advisor到Advised中, 根据beforeExistingAdvisors是否添加到前面
if (this.beforeExistingAdvisors) {
advised.addAdvisor(0, this.advisor);
}
else {
advised.addAdvisor(this.advisor);
}
return bean;
}
}
//当前传进来的Bean对象,是否能够被当前后置处理器的Advisor处理
if (isEligible(bean, beanName)) {
//为传进来的bean生成一个代理工厂
ProxyFactory proxyFactory = prepareProxyFactory(bean, beanName);
//如果是接口代理,调用父类ProxyProcessorSupport的方法把需要代理接口加入到代理工厂对象中
if (!proxyFactory.isProxyTargetClass()) {
evaluateProxyInterfaces(bean.getClass(), proxyFactory);
}
//将当前advisor加入到代理工厂中,ProxyFactory也是实现了Advised接口的
proxyFactory.addAdvisor(this.advisor);
//子类自定义处理代理工厂
customizeProxyFactory(proxyFactory);
//生成代理对象
return proxyFactory.getProxy(getProxyClassLoader());
}
// No proxy needed.
return bean;
}
protected boolean isEligible(Object bean, String beanName) {
return isEligible(bean.getClass());
}
protected boolean isEligible(Class<?> targetClass) {
Boolean eligible = this.eligibleBeans.get(targetClass);
if (eligible != null) {
return eligible;
}
if (this.advisor == null) {
return false;
}
//根据不同类型的advisor中的ClassFilter和MethodMatcher,判断是否能处理当前bean的Class对象
eligible = AopUtils.canApply(this.advisor, targetClass);
//放入缓存
this.eligibleBeans.put(targetClass, eligible);
return eligible;
}
protected ProxyFactory prepareProxyFactory(Object bean, String beanName) {
ProxyFactory proxyFactory = new ProxyFactory();
proxyFactory.copyFrom(this);
proxyFactory.setTarget(bean);
return proxyFactory;
}
protected void customizeProxyFactory(ProxyFactory proxyFactory) {
}
}
有关Advisor、Advice、Advised可以看这三篇文章 Spring AOP(三) Advisor类架构 Advice、Advisor、Advised都是什么接口? Spring AOP之Advisor、PointcutAdvisor、IntroductionAdvisor、IntroductionInterceptor
这个类只是多实现了BeanFactoryAware接口,为了获取BeanFactory,重写了父类的prepareProxyFactory和isEligible方法
public abstract class AbstractBeanFactoryAwareAdvisingPostProcessor extends AbstractAdvisingBeanPostProcessor
implements BeanFactoryAware {
/**
* 除了有ConfigurableBeanFactory的功能,为分析、修改bean的定义,或单例bean预初始化提供了便利
*/
@Nullable
private ConfigurableListableBeanFactory beanFactory;
/**
* BeanFactoryAware的功能,Spring框架会将BeanFactory传进来,调用这个方法
*/
@Override
public void setBeanFactory(BeanFactory beanFactory) {
//如果是指定的类型就初始化beanFactory这个属性
this.beanFactory = (beanFactory instanceof ConfigurableListableBeanFactory ?
(ConfigurableListableBeanFactory) beanFactory : null);
}
@Override
protected ProxyFactory prepareProxyFactory(Object bean, String beanName) {
if (this.beanFactory != null) {
//在BeanDefinition中设置bean的originalTargetClass属性
AutoProxyUtils.exposeTargetClass(this.beanFactory, beanName, bean.getClass());
}
//调用父类方法生成代理工厂
ProxyFactory proxyFactory = super.prepareProxyFactory(bean, beanName);
//即使代理工厂是基于接口代理,但是如果给定的bean和BeanFactory需要基于类代理的,设置代理工厂为基于类代理
if (!proxyFactory.isProxyTargetClass() && this.beanFactory != null &&
AutoProxyUtils.shouldProxyTargetClass(this.beanFactory, beanName)) {
proxyFactory.setProxyTargetClass(true);
}
return proxyFactory;
}
/**
* 如果beanName表示是原始实例,那么跳过任何代理,否则调用父类isEligible方法
*/
@Override
protected boolean isEligible(Object bean, String beanName) {
return (!AutoProxyUtils.isOriginalInstance(beanName, bean.getClass()) &&
super.isEligible(bean, beanName));
}
}
public class AsyncAnnotationBeanPostProcessor extends AbstractBeanFactoryAwareAdvisingPostProcessor {
/**
* 默认的TaskExecutor bean名称,值是"taskExecutor"
*/
public static final String DEFAULT_TASK_EXECUTOR_BEAN_NAME =
AnnotationAsyncExecutionInterceptor.DEFAULT_TASK_EXECUTOR_BEAN_NAME;
protected final Log logger = LogFactory.getLog(getClass());
//线程池的一个Supplier接口,Supplier是一个函数式接口,通过他的Get方法可以获得Executor的实例
@Nullable
private Supplier<Executor> executor;
/**
* 处理异步方法引发的未捕获异常的策略。异步方法通常返回一个Future实例,该实例允许访问底层异常。
* 当该方法不提供该返回类型时,可以使用该处理程序来管理此类未捕获的异常。
*/
@Nullable
private Supplier<AsyncUncaughtExceptionHandler> exceptionHandler;
/**
* 自定义的异步注解,@EnableAsync的annotation属性传进来的
*/
@Nullable
private Class<? extends Annotation> asyncAnnotationType;
//设置当前后置处理器的advisor是否在其他advisor之前
public AsyncAnnotationBeanPostProcessor() {
setBeforeExistingAdvisors(true);
}
public void configure(
@Nullable Supplier<Executor> executor, @Nullable Supplier<AsyncUncaughtExceptionHandler> exceptionHandler) {
this.executor = executor;
this.exceptionHandler = exceptionHandler;
}
public void setExecutor(Executor executor) {
this.executor = SingletonSupplier.of(executor);
}
public void setExceptionHandler(AsyncUncaughtExceptionHandler exceptionHandler) {
this.exceptionHandler = SingletonSupplier.of(exceptionHandler);
}
public void setAsyncAnnotationType(Class<? extends Annotation> asyncAnnotationType) {
Assert.notNull(asyncAnnotationType, "'asyncAnnotationType' must not be null");
this.asyncAnnotationType = asyncAnnotationType;
}
@Override
public void setBeanFactory(BeanFactory beanFactory) {
//调用父类方法,设置ConfigurableListableBeanFactory类型的BeanFactory
super.setBeanFactory(beanFactory);
//生成一个Advisor实例
AsyncAnnotationAdvisor advisor = new AsyncAnnotationAdvisor(this.executor, this.exceptionHandler);
if (this.asyncAnnotationType != null) {
//如果有自定义的异步注解,使用自定义的异步注解
advisor.setAsyncAnnotationType(this.asyncAnnotationType);
}
advisor.setBeanFactory(beanFactory);
//初始化advisor属性
this.advisor = advisor;
}
}
生成AsyncAnnotationAdvisor实例需要继续往里面看,是非常关键的一步,里面有如何拦截异步方法,如何调用的逻辑,继续往下看。
这个类的继承关系如下
PointcutAdvisor接口是切入点驱动的Advisor,所以AsyncAnnotationAdvisor就是持有Advice和Pointcut的Advisor,类代码如下
public class AsyncAnnotationAdvisor extends AbstractPointcutAdvisor implements BeanFactoryAware {
private Advice advice;
private Pointcut pointcut;
public AsyncAnnotationAdvisor() {
this((Supplier<Executor>) null, (Supplier<AsyncUncaughtExceptionHandler>) null);
}
@SuppressWarnings("unchecked")
public AsyncAnnotationAdvisor(
@Nullable Executor executor, @Nullable AsyncUncaughtExceptionHandler exceptionHandler) {
this(SingletonSupplier.ofNullable(executor), SingletonSupplier.ofNullable(exceptionHandler));
}
@SuppressWarnings("unchecked")
public AsyncAnnotationAdvisor(
@Nullable Supplier<Executor> executor, @Nullable Supplier<AsyncUncaughtExceptionHandler> exceptionHandler) {
Set<Class<? extends Annotation>> asyncAnnotationTypes = new LinkedHashSet<>(2);
//添加@Async注解
asyncAnnotationTypes.add(Async.class);
try {
//添加@Asynchronous注解
asyncAnnotationTypes.add((Class<? extends Annotation>)
ClassUtils.forName("javax.ejb.Asynchronous", AsyncAnnotationAdvisor.class.getClassLoader()));
}
catch (ClassNotFoundException ex) {
// If EJB 3.1 API not present, simply ignore.
}
//初始化advice属性
this.advice = buildAdvice(executor, exceptionHandler);
//初始化pointcut属性
this.pointcut = buildPointcut(asyncAnnotationTypes);
}
/**
* 自定义异步注解的切点,通过@EnableAsync的annotation属性传进来,默认的@Async和@javax.ejb.Asynchronous会失效
*/
public void setAsyncAnnotationType(Class<? extends Annotation> asyncAnnotationType) {
Assert.notNull(asyncAnnotationType, "'asyncAnnotationType' must not be null");
Set<Class<? extends Annotation>> asyncAnnotationTypes = new HashSet<>();
asyncAnnotationTypes.add(asyncAnnotationType);
this.pointcut = buildPointcut(asyncAnnotationTypes);
}
/**
* 设置advice的BeanFactory,在后面调用异步方法时,通过这个beanFactory根据executor的beanName来获取executor实例
*/
@Override
public void setBeanFactory(BeanFactory beanFactory) {
if (this.advice instanceof BeanFactoryAware) {
((BeanFactoryAware) this.advice).setBeanFactory(beanFactory);
}
}
@Override
public Advice getAdvice() {
return this.advice;
}
@Override
public Pointcut getPointcut() {
return this.pointcut;
}
protected Advice buildAdvice(
@Nullable Supplier<Executor> executor, @Nullable Supplier<AsyncUncaughtExceptionHandler> exceptionHandler) {
//生成一个advice实例,这个下面继续往里面看
AnnotationAsyncExecutionInterceptor interceptor = new AnnotationAsyncExecutionInterceptor(null);
interceptor.configure(executor, exceptionHandler);
return interceptor;
}
protected Pointcut buildPointcut(Set<Class<? extends Annotation>> asyncAnnotationTypes) {
ComposablePointcut result = null;
//传进来的是@Async或@javax.ejb.Asynchronous注解;也可能是自定义的一个异步注解,遍历每一个注解
for (Class<? extends Annotation> asyncAnnotationType : asyncAnnotationTypes) {
//类级别的切点
Pointcut cpc = new AnnotationMatchingPointcut(asyncAnnotationType, true);
//方法级别的切点
Pointcut mpc = new AnnotationMatchingPointcut(null, asyncAnnotationType, true);
if (result == null) {
result = new ComposablePointcut(cpc);
}
else {
result.union(cpc);
}
//合并所有类级别、方法级别的切点
result = result.union(mpc);
}
//如果为空,返回所有方法、类都匹配的切点
return (result != null ? result : Pointcut.TRUE);
}
}
下面需要讲下AnnotationAsyncExecutionInterceptor和AnnotationMatchingPointcut两个类,看完这两个类,整个异步处理就基本结束了
AnnotationAsyncExecutionInterceptor类文件结构如下
Interceptor是通用拦截器接口抽象,是个空接口;
MethodInterceptor是方法拦截器,有一个Object invoke(MethodInvocation invocation)方法,重写该方法可以在方法调用的前后,加入自定义逻辑,下面是源码中提供的例子 (关于方法拦截器可以参考这篇文章 Spring方法拦截器MethodInterceptor)
class TracingInterceptor implements MethodInterceptor {
Object invoke(MethodInvocation i) throws Throwable {
System.out.println("method "+i.getMethod()+" is called on "+
i.getThis()+" with args "+i.getArguments());
Object ret=i.proceed();//调用目标方法
System.out.println("method "+i.getMethod()+" returns "+ret);
return ret;
}
}
AsyncExecutionAspectSupport是异步方法执行切面的基类,实现了BeanFactoryWare接口,可以获取Bean工厂,源码如下
public abstract class AsyncExecutionAspectSupport implements BeanFactoryAware {
//线程池默认bean名称
public static final String DEFAULT_TASK_EXECUTOR_BEAN_NAME = "taskExecutor";
//CompletableFuture类是否存在,这个类是java8引入的,这个字段doSubmit方法有用到
private static final boolean completableFuturePresent = ClassUtils.isPresent(
"java.util.concurrent.CompletableFuture", AsyncExecutionInterceptor.class.getClassLoader());
protected final Log logger = LogFactory.getLog(getClass());
//异步方法和对应线程池实例的缓存,因为每个异步方法可以指定线程池实例
private final Map<Method, AsyncTaskExecutor> executors = new ConcurrentHashMap<Method, AsyncTaskExecutor>(16);
//默认的线程池实例
private volatile Executor defaultExecutor;
//未捕获异常的处理器
private AsyncUncaughtExceptionHandler exceptionHandler;
private BeanFactory beanFactory;
public AsyncExecutionAspectSupport(Executor defaultExecutor) {
this(defaultExecutor, new SimpleAsyncUncaughtExceptionHandler());
}
public AsyncExecutionAspectSupport(Executor defaultExecutor, AsyncUncaughtExceptionHandler exceptionHandler) {
this.defaultExecutor = defaultExecutor;
this.exceptionHandler = exceptionHandler;
}
public void setExecutor(Executor defaultExecutor) {
this.defaultExecutor = defaultExecutor;
}
public void setExceptionHandler(AsyncUncaughtExceptionHandler exceptionHandler) {
this.exceptionHandler = exceptionHandler;
}
/**
* 重写BeanFactoryAware接口的方法,设置Bean工厂
*/
@Override
public void setBeanFactory(BeanFactory beanFactory) {
this.beanFactory = beanFactory;
}
/**
* 根据指定异步方法获取对应的线程池实例
*/
protected AsyncTaskExecutor determineAsyncExecutor(Method method) {
//从缓存里面获取,如果获取得到直接返回
AsyncTaskExecutor executor = this.executors.get(method);
if (executor == null) {
Executor targetExecutor;
//根据方法获取线程池实例的Bean名称,@Async的value属性的值
String qualifier = getExecutorQualifier(method);
if (StringUtils.hasLength(qualifier)) {
//bean工厂根据bean名称获取线程池实例
targetExecutor = findQualifiedExecutor(this.beanFactory, qualifier);
}
else {
targetExecutor = this.defaultExecutor;
if (targetExecutor == null) {
synchronized (this.executors) {
if (this.defaultExecutor == null) {
this.defaultExecutor = getDefaultExecutor(this.beanFactory);
}
targetExecutor = this.defaultExecutor;
}
}
}
if (targetExecutor == null) {
return null;
}
//如果不是AsyncListenableTaskExecutor类型的线程池实例,构造一个TaskExecutorAdapter实例,TaskExecutorAdapter是带一个TaskDecorator属性的线程池实例,可以对要执行的任务进行装饰,比如SpringSecurity进行权限管理时,创建异步任务会丢失父线程的权限信息,可以写一个类实现TaskDecorator接口,在decorate方法里面往SecurityContextHolder设置上下文信息
executor = (targetExecutor instanceof AsyncListenableTaskExecutor ?
(AsyncListenableTaskExecutor) targetExecutor : new TaskExecutorAdapter(targetExecutor));
this.executors.put(method, executor);
}
return executor;
}
/**
* 抽象方法,根据异步方法获取线程池bean的名称
*/
protected abstract String getExecutorQualifier(Method method);
/**
* 根据bean名称获取Executor类型的线程池实例
*/
protected Executor findQualifiedExecutor(BeanFactory beanFactory, String qualifier) {
if (beanFactory == null) {
throw new IllegalStateException("BeanFactory must be set on " + getClass().getSimpleName() +
" to access qualified executor '" + qualifier + "'");
}
return BeanFactoryAnnotationUtils.qualifiedBeanOfType(beanFactory, Executor.class, qualifier);
}
//获取默认的线程池实例
protected Executor getDefaultExecutor(BeanFactory beanFactory) {
if (beanFactory != null) {
try {
// 找TaskExecutor类型的线程池实例
return beanFactory.getBean(TaskExecutor.class);
}
catch (NoUniqueBeanDefinitionException ex) {
logger.debug("Could not find unique TaskExecutor bean", ex);
try {
//找名称为taskExecutor的线程池实例
return beanFactory.getBean(DEFAULT_TASK_EXECUTOR_BEAN_NAME, Executor.class);
}
catch (NoSuchBeanDefinitionException ex2) {
if (logger.isInfoEnabled()) {
logger.info("More than one TaskExecutor bean found within the context, and none is named " +
"'taskExecutor'. Mark one of them as primary or name it 'taskExecutor' (possibly " +
"as an alias) in order to use it for async processing: " + ex.getBeanNamesFound());
}
}
}
catch (NoSuchBeanDefinitionException ex) {
logger.debug("Could not find default TaskExecutor bean", ex);
try {
//找名称为taskExecutor的线程池实例
return beanFactory.getBean(DEFAULT_TASK_EXECUTOR_BEAN_NAME, Executor.class);
}
catch (NoSuchBeanDefinitionException ex2) {
logger.info("No task executor bean found for async processing: " +
"no bean of type TaskExecutor and no bean named 'taskExecutor' either");
}
// Giving up -> either using local default executor or none at all...
}
}
return null;
}
/**
* 执行异步任务,参数分别是异步方法执行逻辑、线程池实例、异步方法返回结果
*/
protected Object doSubmit(Callable<Object> task, AsyncTaskExecutor executor, Class<?> returnType) {
//如果是Java8,使用CompletableFuture来执行异步任务
if (completableFuturePresent) {
Future<Object> result = CompletableFutureDelegate.processCompletableFuture(returnType, task, executor);
if (result != null) {
return result;
}
}
//如果返回类型是ListenableFuture调用submitListenable
if (ListenableFuture.class.isAssignableFrom(returnType)) {
return ((AsyncListenableTaskExecutor) executor).submitListenable(task);
}
//如果返回类型是其他的Future类型,直接交给线程池执行
else if (Future.class.isAssignableFrom(returnType)) {
return executor.submit(task);
}
else {
//直接不返回结果
executor.submit(task);
return null;
}
}
//异常处理
protected void handleError(Throwable ex, Method method, Object... params) throws Exception {
//带返回值的直接抛出异常
if (Future.class.isAssignableFrom(method.getReturnType())) {
ReflectionUtils.rethrowException(ex);
}
else {
//异常处理器处理异常,即使再出现异常也不抛出
try {
this.exceptionHandler.handleUncaughtException(ex, method, params);
}
catch (Throwable ex2) {
logger.error("Exception handler for async method '" + method.toGenericString() +
"' threw unexpected exception itself", ex2);
}
}
}
/**
* Java8下执行异步任务的内部类
*/
@UsesJava8
private static class CompletableFutureDelegate {
public static <T> Future<T> processCompletableFuture(Class<?> returnType, final Callable<T> task, Executor executor) {
//如果异步方法返回值不是CompletableFuture类型直接返回null
if (!CompletableFuture.class.isAssignableFrom(returnType)) {
return null;
}
//调用CompletableFuture的supplyAsync方法去执行task任务
return CompletableFuture.supplyAsync(new Supplier<T>() {
@Override
public T get() {
try {
return task.call();
}
catch (Throwable ex) {
throw new CompletionException(ex);
}
}
}, executor);
}
}
}
关于CompletableFuture类可以参考这篇文章 CompletableFuture原理解析
下面看AsyncExecutionInterceptor这个类,这个类是处理异步方法调用的方法拦截器
public class AsyncExecutionInterceptor extends AsyncExecutionAspectSupport implements MethodInterceptor, Ordered {
public AsyncExecutionInterceptor(Executor defaultExecutor) {
super(defaultExecutor);
}
public AsyncExecutionInterceptor(Executor defaultExecutor, AsyncUncaughtExceptionHandler exceptionHandler) {
super(defaultExecutor, exceptionHandler);
}
/**
* MethodInterceptor重写的方法,方法调用前后处理一些逻辑
*/
@Override
public Object invoke(final MethodInvocation invocation) throws Throwable {
//获取invocation的目标对象的class对象(被调用的异步方法所属对象的Class对象)
Class<?> targetClass = (invocation.getThis() != null ? AopUtils.getTargetClass(invocation.getThis()) : null);
//通过class对象和invocation的method获取Method
Method specificMethod = ClassUtils.getMostSpecificMethod(invocation.getMethod(), targetClass);
//没理解为什么还要再获取一次,我debug时候调用specificMethod.equlas(userDeclaredMethod)返回的是true
final Method userDeclaredMethod = BridgeMethodResolver.findBridgedMethod(specificMethod);
//通过method获取处理这个异步方法的线程池实例
AsyncTaskExecutor executor = determineAsyncExecutor(userDeclaredMethod);
if (executor == null) {
throw new IllegalStateException(
"No executor specified and no default executor set on AsyncExecutionInterceptor either");
}
//将异步方法封装成一个Callable对象
Callable<Object> task = new Callable<Object>() {
@Override
public Object call() throws Exception {
try {
Object result = invocation.proceed();
if (result instanceof Future) {
return ((Future<?>) result).get();
}
}
catch (ExecutionException ex) {
handleError(ex.getCause(), userDeclaredMethod, invocation.getArguments());
}
catch (Throwable ex) {
handleError(ex, userDeclaredMethod, invocation.getArguments());
}
return null;
}
};
//把异步任务、线程池实例、返回值类型传进去,调用父类的AsyncExecutionAspectSupport的doSubmit方法
return doSubmit(task, executor, invocation.getMethod().getReturnType());
}
/**
* 根据异步方法,获取处理该异步方法的线程池实例的bean名称,后续在BeanFactory里面根据这个名称获取线程池实例,本类中返回null,子类会重写这个方法,AnnotationAsyncExecutionInterceptor重写改方法是获取@Async注解的value值
*/
@Override
protected String getExecutorQualifier(Method method) {
return null;
}
/**
* 调用父类的获取默认线程池实例的方法,如果获取不到,使用SimpleAsyncTaskExecutor实例
* SimpleAsyncTaskExecutor这个线程池会为每个任务触发一个新线程,异步执行它,相当于没用线程池
*/
@Override
protected Executor getDefaultExecutor(BeanFactory beanFactory) {
Executor defaultExecutor = super.getDefaultExecutor(beanFactory);
return (defaultExecutor != null ? defaultExecutor : new SimpleAsyncTaskExecutor());
}
@Override
public int getOrder() {
return Ordered.HIGHEST_PRECEDENCE;
}
}
最后看最终实例化的AnnotationAsyncExecutionInterceptor这个类
public class AnnotationAsyncExecutionInterceptor extends AsyncExecutionInterceptor {
public AnnotationAsyncExecutionInterceptor(@Nullable Executor defaultExecutor) {
super(defaultExecutor);
}
public AnnotationAsyncExecutionInterceptor(@Nullable Executor defaultExecutor, AsyncUncaughtExceptionHandler exceptionHandler) {
super(defaultExecutor, exceptionHandler);
}
/**
* 返回执行该异步方法执行时用到的线程池实例bean名称
*/
@Override
@Nullable
protected String getExecutorQualifier(Method method) {
//从方法上找是否有@Async修饰
Async async = AnnotatedElementUtils.findMergedAnnotation(method, Async.class);
if (async == null) {
//如果方法上没有,该方法的类上找是否有@Async修饰
async = AnnotatedElementUtils.findMergedAnnotation(method.getDeclaringClass(), Async.class);
}
//如果找的到,返回@Async注解的value属性值
return (async != null ? async.value() : null);
}
}
到这里AsyncAnnotationAdvisor的advice属性已经讲完了,下面再看另外一个重要属性pointcut
在AsyncAnnotationAdvisor类中的Pointcut buildPointcut(Set
public class AnnotationMatchingPointcut implements Pointcut {
//类级别的过滤器
private final ClassFilter classFilter;
//方法级别的匹配器
private final MethodMatcher methodMatcher;
public AnnotationMatchingPointcut(Class<? extends Annotation> classAnnotationType) {
this(classAnnotationType, false);
}
public AnnotationMatchingPointcut(Class<? extends Annotation> classAnnotationType, boolean checkInherited) {
//实例化一个AnnotationClassFilter注解类过滤器,判断class对象是否有指定注解修饰,如果checkInherited为true还会往父类、父接口查找是否有指定注解修饰
this.classFilter = new AnnotationClassFilter(classAnnotationType, checkInherited);
this.methodMatcher = MethodMatcher.TRUE;
}
public AnnotationMatchingPointcut(@Nullable Class<? extends Annotation> classAnnotationType,
@Nullable Class<? extends Annotation> methodAnnotationType) {
this(classAnnotationType, methodAnnotationType, false);
}
public AnnotationMatchingPointcut(@Nullable Class<? extends Annotation> classAnnotationType,
@Nullable Class<? extends Annotation> methodAnnotationType, boolean checkInherited) {
Assert.isTrue((classAnnotationType != null || methodAnnotationType != null),
"Either Class annotation type or Method annotation type needs to be specified (or both)");
if (classAnnotationType != null) {
//判断class对象是否有指定注解修饰,如果checkInherited为true还会往父类、父接口查找是否有指定注解修饰
this.classFilter = new AnnotationClassFilter(classAnnotationType, checkInherited);
}
else {
//判断class对象是否有指定注解修饰,但是不会判断父接口、父类是否有该接口修饰
this.classFilter = new AnnotationCandidateClassFilter(methodAnnotationType);
}
if (methodAnnotationType != null) {
//判断方法是否有指定注解修饰
this.methodMatcher = new AnnotationMethodMatcher(methodAnnotationType, checkInherited);
}
else {
this.methodMatcher = MethodMatcher.TRUE;
}
}
@Override
public ClassFilter getClassFilter() {
return this.classFilter;
}
@Override
public MethodMatcher getMethodMatcher() {
return this.methodMatcher;
}
@Override
public boolean equals(@Nullable Object other) {
if (this == other) {
return true;
}
if (!(other instanceof AnnotationMatchingPointcut)) {
return false;
}
AnnotationMatchingPointcut otherPointcut = (AnnotationMatchingPointcut) other;
return (this.classFilter.equals(otherPointcut.classFilter) &&
this.methodMatcher.equals(otherPointcut.methodMatcher));
}
@Override
public int hashCode() {
return this.classFilter.hashCode() * 37 + this.methodMatcher.hashCode();
}
@Override
public String toString() {
return "AnnotationMatchingPointcut: " + this.classFilter + ", " + this.methodMatcher;
}
/**
* 类级别的AnnotationMatchingPointcut方法工厂
*/
public static AnnotationMatchingPointcut forClassAnnotation(Class<? extends Annotation> annotationType) {
Assert.notNull(annotationType, "Annotation type must not be null");
return new AnnotationMatchingPointcut(annotationType);
}
/**
* 方法级别的AnnotationMatchingPointcut方法工厂
*/
public static AnnotationMatchingPointcut forMethodAnnotation(Class<? extends Annotation> annotationType) {
Assert.notNull(annotationType, "Annotation type must not be null");
return new AnnotationMatchingPointcut(null, annotationType);
}
//判断class对象是否有指定注解修饰,和AnnotationClassFilter区别就是AnnotationCandidateClassFilter不会判断父接口、父类是否有该接口修饰
private static class AnnotationCandidateClassFilter implements ClassFilter {
private final Class<? extends Annotation> annotationType;
AnnotationCandidateClassFilter(Class<? extends Annotation> annotationType) {
this.annotationType = annotationType;
}
@Override
public boolean matches(Class<?> clazz) {
return AnnotationUtils.isCandidateClass(clazz, this.annotationType);
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (!(obj instanceof AnnotationCandidateClassFilter)) {
return false;
}
AnnotationCandidateClassFilter that = (AnnotationCandidateClassFilter) obj;
return this.annotationType.equals(that.annotationType);
}
@Override
public int hashCode() {
return this.annotationType.hashCode();
}
@Override
public String toString() {
return getClass().getName() + ": " + this.annotationType;
}
}
}
方法调用时,会进入DynamicAdvisedInterceptor这个类的Object intercept(Object proxy, Method method, Object[] args, MethodProxy methodProxy)方法,为什么会进这个方法,还需要往前看,在应用启动阶段生成代理对象时做的具体操作。在AbstractAdvisingBeanPostProcessor类中,
红框处生成代理对象时,会再调用CglibAopProxy类的getProxy方法
里面会再调用getCallbacks方法获取回调
在获取回调的方法中会直接new一个DynamicAdvisedInterceptor,把这个方法拦截器设置到回调中,在调用异步方法时会进入这个拦截器,DynamicAdvisedInterceptor的源码如下
private static class DynamicAdvisedInterceptor implements MethodInterceptor, Serializable {
private final AdvisedSupport advised;
public DynamicAdvisedInterceptor(AdvisedSupport advised) {
this.advised = advised;
}
@Override
@Nullable
public Object intercept(Object proxy, Method method, Object[] args, MethodProxy methodProxy) throws Throwable {
Object oldProxy = null;
boolean setProxyContext = false;
Object target = null;
TargetSource targetSource = this.advised.getTargetSource();
try {
if (this.advised.exposeProxy) {
// Make invocation available if necessary.
oldProxy = AopContext.setCurrentProxy(proxy);
setProxyContext = true;
}
// Get as late as possible to minimize the time we "own" the target, in case it comes from a pool...
target = targetSource.getTarget();
Class<?> targetClass = (target != null ? target.getClass() : null);
List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);
Object retVal;
// Check whether we only have one InvokerInterceptor: that is,
// no real advice, but just reflective invocation of the target.
if (chain.isEmpty() && Modifier.isPublic(method.getModifiers())) {
// We can skip creating a MethodInvocation: just invoke the target directly.
// Note that the final invoker must be an InvokerInterceptor, so we know
// it does nothing but a reflective operation on the target, and no hot
// swapping or fancy proxying.
Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);
retVal = methodProxy.invoke(target, argsToUse);
}
else {
// We need to create a method invocation...
retVal = new CglibMethodInvocation(proxy, target, method, args, targetClass, chain, methodProxy).proceed();
}
retVal = processReturnType(proxy, target, method, retVal);
return retVal;
}
finally {
if (target != null && !targetSource.isStatic()) {
targetSource.releaseTarget(target);
}
if (setProxyContext) {
// Restore old proxy.
AopContext.setCurrentProxy(oldProxy);
}
}
}
@Override
public boolean equals(@Nullable Object other) {
return (this == other ||
(other instanceof DynamicAdvisedInterceptor &&
this.advised.equals(((DynamicAdvisedInterceptor) other).advised)));
}
/**
* CGLIB uses this to drive proxy creation.
*/
@Override
public int hashCode() {
return this.advised.hashCode();
}
}
DynamicAdvisedInterceptor这个类有一个AdvisedSupport属性,这个属性其实是从异步注解后置处理器的advisor拿过来,然后执行new CglibMethodInvocation那一行代码,把之前设置在后置处理器中的Advice传进去,接着会跳到AsyncExecutionInterceptor的invoke方法去,把任务放到线程池汇中去执行,然后处理返回值,整个流程就结束了。
整个流程就是,首先在项目启动阶段,通过@EnableAsync注解导入一些配置类,最终实例化一个异步注解的后置处理器(AsyncAnnotationBeanPostProcessor),这个后置处理器有自己的切入点和处理逻辑,会拦截项目中所有的bean,如果某个bean符合该后置处理器的切入点,那么SpringBoot会通过AOP生成一个代理对象,生成代理对象时会设置一个回调,回调的内容就是后置处理器中的处理逻辑(实际逻辑就是将异步方法内容放入线程池中执行),并将这个代理对象注入到使用的地方。
当真正调用异步方法时,因为注入的是代理对象,那么调用到异步方法之前会进入之前设置的回调,去执行异步方法内容,执行完毕后会根据不同的返回值类型处理返回值,至此异步方法就执行完毕了。整篇文章还是有点抽象,过程描述不太详细,只是描述每个类的功能,之前想画一下时序图,但是因为方法调用太多画的图会很复杂,所以强烈建议读者在应用启动阶段和方法调用阶段设置断点,一步步Debug会理解得更深刻。
看完@Async源码感触还是挺多的,首先就是源码的类结构的设计真的很优秀,很多思路可以借鉴,引入到自己的项目中。其次看源码我的一个思路就是,从上往下,从父类到子类,父接口到子接口,对于每一个类,确定是如何实例化的,每个属性是如何设置的,有哪些方法,每个方法的每一行是做什么的,最后大致看完以后,设置断点一步步Debug走下去,边Debug边看每个类的结构,这样对某个类就有个整体把握。
当然源码很复杂,有些地方不可能看的很细,在我看@Async源码的时候有些地方也没有理解,比如AOP那一块,以后有机会再慢慢看看,总之看源码慢慢来,看完有收获就可以。