注意力机制(Attention Mechanism)

发布时间:2022-08-18 18:23

注意力机制起源于应用于NLP的RNN模型,但也在其他的领域有所应用。对注意力机制的理解也是算法面试经常提及的一道基础面试题,在这篇博文里我们汇总吴恩达深度学习视频序列模型3.7和3.8以及台大李宏毅教授对Attenion Mechanism以及相关参考文献对注意力机制给出详细的介绍的解释。

注意力机制(Attention Mechanism)

注意力机制是深度学习中一个非常重要的思想,在NLP领域尤为重要。

为什么要引入Attention Mechanism?

在一个Encoder和Decoder的翻译模型中,翻译一段法语到英文大致是整个序列输进Encoder然后Decoder再输出整个结果。也就是说模型是观测了整个要翻译的序列,然后再按序做的翻译(时间步模型)。注意力机制(Attention Mechanism)_第1张图片
随着输入序列边长,对模型输出结果的Bleu score评估会呈现这样的变化:
注意力机制(Attention Mechanism)_第2张图片
绿线代表人类翻译的水平,蓝线代表机器翻译的水平,之间的Gap能衡量模型记忆长序列的能力。

而人工翻译则是看一部分,翻译一部分,再看下一部分,再翻译一部分,如此往复。因为对人来说,要记忆整个序列是非常困难的。

总结下来:

  1. 输入序列非常长时,原始的Encoder-Decoder翻译的质量会出现明显下降,因为整个模型要处理的feature过多,并且这些feature不一定对翻译特定的单词有所助益。一说模型难以学到足够合理的向量表示。
  2. 原始的时间步方式翻译的模型在设计上有缺陷。具体来讲,整个序列无论长短都被Encoder编码到固定长度,这使得Decoder的能力受限。因为翻译前后,源语言和目标语言不一定长度一致。
  3. 时间步编解码器的结构缺乏有效的理论支撑和经验指导,导致设计困难,模型效果不好。

注意力机制直观理解

如同前面讲过的人工翻译是一部分一部分看,一部分一部分翻译一样,注意力机制旨在实现在计算某个时间步的输出时,将注意力集中在一段序列上,段的大小可以由一个窗口来决定,并且为该段序列每一个时间步都赋以权值,以决定它们对最终输出的影响权重。这样使得前面所述问题得到一定程度的解决。

注意力机制

实例说明:
注意力机制(Attention Mechanism)_第3张图片
如图所示,在计算Encoder的输出上下文 c 0 c^0 c0时,维持窗口大小为4,即一个时间步输出由四个时间步输入决定。
c 0 = ∑ i = 1 4 α 0 ^ i h i c^0=\sum_{i=1}^4\hat{\alpha_0}^ih^i c0=i=14α0^ihi

那么每个时间步的权重 α 0 i \alpha_0^i α0i如何计算,通过一个match机制来实现,具体而言,可以使用一个小型的网络协同训练来得到一个具体match函数。
注意力机制(Attention Mechanism)_第4张图片
图中z是上一个时间步的输出,吴恩达notation里写作 s < t − 1 > s^{} s<t1>

可以使用softmax来实现:
注意力机制(Attention Mechanism)_第5张图片
使用softmax是为了窗口内部所有时间步权重相加等于1。

除此之外还有一些其他的实现方式:
注意力机制(Attention Mechanism)_第6张图片

  • 余弦相似度
  • 小型网络(前述)
  • 使用只有一个权重的计算公式,权重可以交由原网络来训练

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号