(七)PyTorch深度学习:全连接层网络

发布时间:2023-03-16 09:30

1、Softmax(层)函数:将输出值转换成概率值(全部值加起来等于一)

(七)PyTorch深度学习:全连接层网络_第1张图片

2、交叉熵损失流程框图:

(七)PyTorch深度学习:全连接层网络_第2张图片

3、交叉熵损失函数(CrossEntropyLoss):

(七)PyTorch深度学习:全连接层网络_第3张图片
(七)PyTorch深度学习:全连接层网络_第4张图片

4、模型设计

(七)PyTorch深度学习:全连接层网络_第5张图片

代码:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),      # 将PIL格式图像转换成Tensor矩阵向量(维度28x28转换成1x28x28,1:为RGB通道)【 [0...255]--->[0,1] 】
    transforms.Normalize((0.1307, ), (0.3081, ))   # 均一化处理(均值、标准差)
])
# 训练集数据
train_dataset = datasets.MNIST(root='../dataset/mnist/',
                               train=True,
                               download=True,
                               transform=transform)
# 加载训练集数据
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
# 测试集数据集
test_dataset = datasets.MNIST(root='../dataset/mnist/',
                              train=False,
                              download=True,
                              transform=transform)
# 加载测试集数据集
test_loader = DataLoader(test_dataset,
                         shuffle=False,
                         batch_size=batch_size)

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.linear1 = torch.nn.Linear(784, 512)   # 将PIL格式图像转换成Tensor矩阵向量(维度28x28转换成1x28x28,1:为RGB通道)28x28=784
        self.linear2 = torch.nn.Linear(512, 256)
        self.linear3 = torch.nn.Linear(256, 128)
        self.linear4 = torch.nn.Linear(128, 64)
        self.linear5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 784)  # -1:自动检测矩阵有有多少行,列指定为784
        x = F.relu(self.linear1(x))
        x = F.relu(self.linear2(x))
        x = F.relu(self.linear3(x))
        x = F.relu(self.linear4(x))
        return self.linear5(x)

model = Net()
###################3 构建损失函数、优化器###############################
criterion = torch.nn.CrossEntropyLoss()          # 交叉熵损失
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)   # 参数优化

#####################4 循环训练 #########################
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        # 准备数据(input:输入,target:实际值)
        inputs, target = data
        # 梯度清0
        optimizer.zero_grad()
        # 前向传播
        outputs = model(inputs)
        # 交叉熵损失函数计算
        loss = criterion(outputs, target)
        # 反向传播
        loss.backward()
        # 参数优化
        optimizer.step()
        # 累计loss
        running_loss += loss.item()
        # 数据集一共有batch_idx个数据,每隔300个打印一次平均损失函数值
        if batch_idx % 300 ==299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
        print('Accuracy on test set: %d %%' % (100 * correct / total))

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
 

运行结果:

(七)PyTorch深度学习:全连接层网络_第6张图片

主要参考了b站的up主:刘二大人

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号