发布时间:2023-06-05 09:30
如果测试图像而非视频的话,网上有很多代码都是在terminal里面运行:python yolo_video.py --image, 本人比较懒不喜欢使用命令运行程序,因此对测试程序yolo.video.py做了如下更改。
实验结果发现Keras写的yolo虽然可以出实验结果但是loss接近10左右。实验结果如图:
将yolo_video.py更改为下面的代码直接运行即可,每测试一张显示一张图像,22行的path是测试图像的路径,23行outputdir是要保存测试图像的路径,61行的default=‘True’即可:(使用需要点赞,谢谢!)
import sys
import argparse
from yolo import YOLO, detect_video
from PIL import Image
import glob, os
from skimage import io
from matplotlib import pyplot as plt
import numpy as np
# def detect_img(yolo):
# while True:
# img = input('Input image filename:')
# try:
# image = Image.open(img)
# except:
# print('Open Error! Try again!')
# continue
# else:
# r_image = yolo.detect_image(image)
# r_image.show()
# yolo.close_session()
def detect_img(yolo):
path = "D:\\Users\\Experiments\\YOLO3\\keras-yolo3-master\\data\\testimage\\*.jpg"
outputdir = "D:\\Users\\Experiments\\YOLO3\\keras-yolo3-master\\data"
for jpgfile in glob.glob(path):
img = Image.open(jpgfile)
img = yolo.detect_image(img)
img.save(os.path.join(outputdir, os.path.basename(jpgfile)))
img = np.array(img)
io.imshow(img)
plt.show()
yolo.close_session()
FLAGS = None
if __name__ == '__main__':
# class YOLO defines the default value, so suppress any default here
parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
'''
Command line options
'''
parser.add_argument(
'--model', type=str,
help='path to model weight file, default ' + YOLO.get_defaults("model_path")
)
parser.add_argument(
'--anchors', type=str,
help='path to anchor definitions, default ' + YOLO.get_defaults("anchors_path")
)
parser.add_argument(
'--classes', type=str,
help='path to class definitions, default ' + YOLO.get_defaults("classes_path")
)
parser.add_argument(
'--gpu_num', type=int,
help='Number of GPU to use, default ' + str(YOLO.get_defaults("gpu_num"))
)
parser.add_argument(
'--image', default=True, action="store_true",
help='Image detection mode, will ignore all positional arguments'
)
'''
Command line positional arguments -- for video detection mode
'''
parser.add_argument(
"--input", nargs='?', type=str,required=False,default='./path2your_video',
help = "Video input path"
)
parser.add_argument(
"--output", nargs='?', type=str, default="",
help = "[Optional] Video output path"
)
FLAGS = parser.parse_args()
if FLAGS.image:
"""
Image detection mode, disregard any remaining command line arguments
"""
print("Image detection mode")
if "input" in FLAGS:
print(" Ignoring remaining command line arguments: " + FLAGS.input + "," + FLAGS.output)
detect_img(YOLO(**vars(FLAGS)))
elif "input" in FLAGS:
detect_video(YOLO(**vars(FLAGS)), FLAGS.input, FLAGS.output)
else:
print("Must specify at least video_input_path. See usage with --help.")
在改进yolo的过程中遇见的错误记录:
错误一:'NoneType' object has no attribute '_inbound_n’
这个错误是由误用tensorflow中的代码写作方式导致的,不可将TensorFlow代码与keras代码一起使用,
解决方法:检查改进的代码,将TensorFlow写的代码替换成keras.
C#线程委托BeginInvoke与EndInvoke的用法
原来友情也有七年之痒,我们终究跨不过七年之痒而我也终究成不了你想要的人
通过 Goyacc 构建 Elasticsearch Querystring 解析器 - 领域特定语言语法分析实践
错误:org.springframework.web.util.NestedServletException: Handler dispatch failed; nested exception is
计算机视觉 (Computer Vision) 领域顶级会议归纳
智能分层、满足更高工作负载,亚马逊云科技加速云端存储服务创新
【ESP 保姆级教程】疯狂传感器篇 —— 案例:UNO/Mega + MQ2烟雾传感器 + MQ3酒精传感器 + MQ7一氧化碳传感器 + OLED