matplotlib画图流程理解

发布时间:2023-06-08 08:00

plt.***和ax.***的区别

我认为所有不先讲清楚plt.***和ax.*** 两种画图方式的区别的教程都是耍流氓。一上来就告诉你,plt.figure(), plt.plot(), plt.show(),这么画就对了的,都是不负责任的表现!

在matplotlib中,有两种画图方式:

plt.figure():plt.***系列。通过plt.xxx来画图,其实是取了一个捷径。这是通过matplotlib提供的一个api,这个plt提供了很多基本的function可以让你很快的画出图来,但是如果你想要更细致的精调,就要使用另外一种方法。

plt.figure(1)
plt.subplot(211)
plt.plot(A,B)
plt.show()

fig, ax = plt.subplots(): 这个就是正统的稍微复杂一点的画图方法了。指定figure和axes,然后对axes单独操作。等下就讲figure和axes都神马意思。

fig, ax = plt.subplots()
ax.plot(A,B)

大部分的新手教程,都是以plt.xxx开始的。我个人认为这不是一个很好的方式。的确, http://plt.xxx简单易懂上手快,但是plt把matplotlib的结构看成一个blackbox,新手在不知道这个lib到底是如何运作的情况下以为自己上手了,可是当你需要细调你的图的时候,你就发现你完全不明白网上的人为什么要用http://ax.xxx, 为什么还有其他那么多种方式来加题目。这样的学习过程是非常不利于长期发展的。

因此,从我这个傻子的经验,我强烈建议在初学matplotlib的时候,尽量避免使用http://plt.xxx系列。当你明白figure/axes/axis都是控制什么的时候,如果你想要简单的制作一个quick and dirty的图,用plt.xxx才是OK。

名词解释 in matplotlib

matplotlib的名词定于对于非英语母语的人来说实在是太不友好了。尤其是axes。仰天长啸。

从官方借了个图

figure fig = plt.figure(): 可以解释为画布。

  • 画图的第一件事,就是创建一个画布figure,然后在这个画布上加各种元素。

Axes ax = fig.add_subplot(1,1,1): 不想定义,没法定义,就叫他axes!

  1. 首先,这个不是你画图的xy坐标抽!
  2. 希望当初写这个lib的时候他们用一个更好的名字。。。
  3. 可以把axes理解为你要放到画布上的各个物体。比如你要画一个太阳,一个房子,一个车在画布上,那么太阳是一个axes,房子是一个axes,etc。
  4. 如果你的figure只有一张图,那么你只有一个axes。如果你的figure有subplot,那么每一个subplot就是一个axes
  5. axes是matlibplot的宇宙中心!axes下可以修改编辑的变量非常多,基本上能包含你的所有需求。

Axis ax.xaxis/ax.yaxis: 对,这才是你的xy坐标轴。

  • 每个坐标轴实际上也是由竖线和数字组成的,每一个竖线其实也是一个axis的subplot,因此ax.xaxis也存在axes这个对象。对这个axes进行编辑就会修改xaxis图像上的表现。

图像的各个部位名称

再从使用指南 User Guide 借个图。每个部分的名称指南,这样当你想修改一个部位的时候,起码知道关键字啊。

一步一步来,用传统方法画个图

下面就是实战。用调取ax的方式来画个图。不要用plt!!

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
A = np.arange(1,5)
B = A**2
C = A**3

首先,搞个画布

我喜欢用这个命令来开始画图。哪怕你没有subplot,也可以用这个subplots来创建一个画布。

这个function创建了一个大小为(14,7)的画布,把这个画布赋值给变量fig,同时在这个画布上创建了一个axes,把这个axes赋值给ax。这样,所有未来的fig.xxx都是对这个画布的操作,所有ax.xxx都是对这个axes的操作。

如果你有两个图,那么ax是一个有两个元素ax[0],ax[1] 的list。ax[0]就对应第一个subplot的ax。

fig, ax = plt.subplots(figsize=(14,7))
# fig, ax = plt.subplots(2,1,figsize(14,7))
# ax[0].***
# ax[1].***

好了画布搞好了,画数据。

注意,我们这里依然不使用plt!因为我们要在这个axes上画数据,因此就用ax.plot()来画。画完第一个再call一次,再画第二个。

下面开始细节的处理

数据画好了就可以各种细调坐标轴啊,tick啊之类的。

首先把标题和xy坐标轴的标题搞定。Again, 不用plt。直接在axes上进行设定。

ax.set_title(\'Title\',fontsize=18)
ax.set_xlabel(\'xlabel\', fontsize=18,fontfamily = \'sans-serif\',fontstyle=\'italic\')
ax.set_ylabel(\'ylabel\', fontsize=\'x-large\',fontstyle=\'oblique\')
ax.legend()

然后是xy坐标轴的一些属性设定, 也是在axes level上完成的

ax.set_aspect(\'equal\')
ax.minorticks_on()
ax.set_xlim(0,16)
ax.grid(which=\'minor\', axis=\'both\')

最后是坐标轴tick和细节,这个在axes.xaxis or axes.yaxis上完成。

ax.xaxis.set_tick_params(rotation=45,labelsize=18,colors=\'w\')
start, end = ax.get_xlim()
ax.xaxis.set_ticks(np.arange(start, end,1))
ax.yaxis.tick_right()

这样一个丑陋的基本图的绘画和编辑就完成了。如果有一些其他的细节调整,在搜索的时候,尽量选择不用plt的答案。原则上来说,plt和ax画图两者是可以互相转换的,然而转换过程让你的代码更复杂,有时还会产生难以理解的bug。因此画图的时候,请坚持使用一种格式。

原文:Matplotlib:先搞明白plt. /ax./ fig再画 - 云+社区 - 腾讯云我们花短短的时间,来从根本上了解一下matplotlib的架构,各种名词是什么意思,一个正常的画图程序是什么。\"icon-default.png?t=LBL2\"https://cloud.tencent.com/developer/article/1618761

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号