PyTorch深度学习——DataLoader使用

发布时间:2023-09-19 11:00

dataloader的使用,相关参数用法可以参考官方文档说明:
dataloader

\"PyTorch深度学习——DataLoader使用_第1张图片\"

import torchvision

#准备测试数据
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_data = torchvision.datasets.CIFAR10(\"./dataset\",train=True,transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_data,batch_size=64,shuffle=True,num_workers=0,drop_last=True)

#batch_size (int, optional) – how many samples per batch to load (default: 1).
#shuffle (bool, optional) – set to True to have the data reshuffled at every epoch (default: False).
#num_workers (int, optional) – how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0)
#drop_last (bool, optional) – set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: False)


#测试数据集的第一张图片
img,target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter(\"dataloader\")
for epoch in range(2):     #两轮读取
    step = 0
    for data in test_data:
        imgs,targets = data
        writer.add_image(\"Epoch:{}\".format(epoch),imgs,step)
        step = step+1

writer.close()

\"PyTorch深度学习——DataLoader使用_第2张图片\"

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号