使用PyTorch训练与评估自己的AlexNet网络教程

发布时间:2023-11-02 08:00

在这里插入图片描述

文章目录

  • 前言
  • 1. 数据集制作
    • 1.1 标签文件制作
    • 1.2 数据集划分
    • 1.3 数据集信息文件制作
  • 2. 修改参数文件
  • 3. 训练
  • 4. 评估

前言

项目地址:https://github.com/Fafa-DL/Awesome-Backbones

视频手把手教程:https://www.bilibili.com/video/BV1SY411P7Nd

AlexNet原论文:点我跳转

1. 数据集制作

1.1 标签文件制作

  • 将项目代码下载到本地
    在这里插入图片描述

  • 本次演示以花卉数据集为例,目录结构如下:

├─flower_photos
│  ├─daisy
│  │      100080576_f52e8ee070_n.jpg
│  │      10140303196_b88d3d6cec.jpg
│  │      ...
│  ├─dandelion
│  │      10043234166_e6dd915111_n.jpg
│  │      10200780773_c6051a7d71_n.jpg
│  │      ...
│  ├─roses
│  │      10090824183_d02c613f10_m.jpg
│  │      102501987_3cdb8e5394_n.jpg
│  │      ...
│  ├─sunflowers
│  │      1008566138_6927679c8a.jpg
│  │      1022552002_2b93faf9e7_n.jpg
│  │      ...
│  └─tulips
│  │      100930342_92e8746431_n.jpg
│  │      10094729603_eeca3f2cb6.jpg
│  │      ...
  • Awesome-Backbones/datas/中创建标签文件annotations.txt,按行将类别名 索引写入文件;
daisy 0
dandelion 1
roses 2
sunflowers 3
tulips 4

在这里插入图片描述

1.2 数据集划分

  • 打开Awesome-Backbones/tools/split_data.py
  • 修改原始数据集路径以及划分后的保存路径,强烈建议划分后的保存路径datasets不要改动,在下一步都是默认基于文件夹进行操作
init_dataset = 'A:/flower_photos'
new_dataset = 'A:/Awesome-Backbones/datasets'
  • Awesome-Backbones/下打开终端输入命令:
python tools/split_data.py
  • 得到划分后的数据集格式如下:
├─...
├─datasets
│  ├─test
│  │  ├─daisy
│  │  ├─dandelion
│  │  ├─roses
│  │  ├─sunflowers
│  │  └─tulips
│  └─train
│      ├─daisy
│      ├─dandelion
│      ├─roses
│      ├─sunflowers
│      └─tulips
├─...

1.3 数据集信息文件制作

  • 确保划分后的数据集是在Awesome-Backbones/datasets下,若不在则在get_annotation.py下修改数据集路径;
datasets_path   = '你的数据集路径'
  • Awesome-Backbones/下打开终端输入命令:
python tools/get_annotation.py
  • Awesome-Backbones/datas下得到生成的数据集信息文件train.txttest.txt

在这里插入图片描述

2. 修改参数文件

  • 每个模型均对应有各自的配置文件,保存在Awesome-Backbones/models
  • backboneneckheadhead.loss构成一个完整模型
  • 找到AlexNet参数配置文件
    在这里插入图片描述
  • model_cfg中修改num_classes为自己数据集类别大小
  • 按照自己电脑性能在data_cfg中修改batch_sizenum_workers
  • 若有预训练权重则可以将pretrained_weights设置为True并将预训练权重的路径赋值给pretrained_weights
  • 若需要冻结训练则freeze_flag 设置为True,可选冻结的有backbone, neck, head
  • optimizer_cfg中修改初始学习率,根据自己batch size调试,若使用了预训练权重,建议学习率调小
  • 学习率更新详见视频教程
  • 更具体配置文件修改可参考配置文件解释

3. 训练

  • 确认Awesome-Backbones/datas/annotations.txt标签准备完毕
  • 确认Awesome-Backbones/datas/train.txttest.txtannotations.txt对应
  • 选择想要训练的模型,在Awesome-Backbones/models/下找到对应配置文件
  • 按照配置文件解释修改参数
  • Awesome-Backbones打开终端运行
python tools/train.py models/alexnet/alexnet_.py

使用PyTorch训练与评估自己的AlexNet网络教程_第1张图片

4. 评估

  • 确认Awesome-Backbones/datas/annotations.txt标签准备完毕
  • 确认Awesome-Backbones/datas/test.txtannotations.txt对应
  • Awesome-Backbones/models/下找到对应配置文件
  • 在参数配置文件中修改权重路径,其余不变
ckpt = '你的训练权重路径'
  • Awesome-Backbones打开终端运行
python tools/evaluation.py models/alexnet/alexnet_.py

使用PyTorch训练与评估自己的AlexNet网络教程_第2张图片

  • 单张图像测试,在Awesome-Backbones打开终端运行
python tools/single_test.py datasets/test/dandelion/14283011_3e7452c5b2_n.jpg models/mobilenet/mobilenet_v3_small.py

使用PyTorch训练与评估自己的AlexNet网络教程_第3张图片

ItVuer - 免责声明 - 关于我们 - 联系我们

本网站信息来源于互联网,如有侵权请联系:561261067@qq.com

桂ICP备16001015号