发布时间:2022-11-20 21:00
卷积神经网络中还有一个重要的操作——池化操作(Pooling)。池化操作有不同的类型,包括:最大值池化,平均值池化等。在实践中,最大值池化(Max Pooling)有更好的效果。最大值池化的操作过程如图2所示:
在使用池化前,我们需要人为确定池化窗口的大小以及步长(stride),在图2中,池化窗口大小为2x2,步长为2。在最大值池化的情况下,池化窗口会从特征图中获取/保留最大的元素。池化操作在降低特征图维度的同时也保留了最重要的信息。如果是平均值池化的话,则是将池化窗口内的元素取平均值。
特征图池化后的结果如图3所示:
池化的作用: